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Complex Funktions Examples c-6 Introduction

Introduction

This is the sixth book containing examples from the Theory of Complex Functions. In this volume we
shall consider the rules of calculations or residues, both in finite singularities and in co. The theory
heavily relies on the Laurent series from the fifth book in this series. The applications of the calculus
of residues are given in the seventh book.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
15th June 2008
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Complex Funktions Examples c-6 Rules of computation of residues

1 Rules of computation of residues
We refer in general to the following rules of computation of residues:

DEFINITION OF A RESIDUUM. Assume that f(z) is an analytic function defined in a neighbourhood of
20 € C (not necessarily at zy itself) with the Laurent series expansion

+oo
f(z) = Z an 2", 0<|z| <

n=—oo

We define the residuum, or residue, of f(z) (more correctly of the complex differential form f(z)dz)
as the coefficient of 1/z in the Laurent series, i.e.

res (f(z) dz; z0) = res(f(2); z0) := 2%” f(z) dz=a_q,
Jr

where I' denotes any simple closed curve, which surrounds zqy in positive sense, and where there is no
other singularity of f(z) inside and on the curve T'.

RULE 1. If 2z € C is a pole of order < q, where q € N, of the analytic function f(z), then

dr-!

lim
| 2520 dz9-1

res(f;z0) = 7 _1 0 {(z — )" ! f(z)} )

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Complex Funktions Examples c-6 Rules of computation of residues

An important special case of RULE I is

RULE IA. If zg is a simple pole or a removable singularity of the analytic function f(z), then

res(f;z0) = lim (2 — 20) f(2).

z—20

RuLE IL. If A(2) and B(z) are analytic in a neighbourhood of zy, and B(z) has a zero of first order
at zg, then the residuum of the quotient f(z) := A(z)/B(z) is given by

Y — Alz) .\ _ Alx)
res(f(z);z0) = res (W’ZO} =5 (z(;)'

We also have the following generalization of RULE II, which however is only rarely used, because it
usual implies some heavy calculations:

RuULE III. Assume that A(z) and B(z) are both analytic in a neighbourhood of zy, and assume that
B(z) has a zero of second order. Then the residuum of the quotient f(z) = A(z)/B(z) at zg it given
by

oy = es (AR 64 (20) B” (20) = 24 (20) B (20)
res (f(2);20) = (B(z) ; 0) - 3{B" (20)}2 '

The complicated structure of RULE III above indicates why it should only rarely be applied.

DEFINITION OF THE RESIDUUM AT oco. Assume that f(z) is analytic in the set |z| > R, so f(z) has
a Laurent series erpansion

+oo
flz)= Z an 2".

n=—oo

We define the residuum at oo as
res(f(z) dz;00) i = —a_q,

where one should notice the change of sign.

Rule IV. Assume that f(z) has a zero at co. Then

res(fdz;00) = — lim z f(z2).

r— 00

Rule V. Assume that f(z) is analytic for |z| > R.Then

ez = s (2 1 () ).
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Complex Funktions Examples c-6 Rules of computation of residues

This may be expressed in the following way: If we change the variable in the Laurent series expansion
above by z = 1/w, then the singularity zp = co is mapped into wg = 0. Since

—% dw = d (%) (= d2),

it follows by this change of variable that we have as a differential form

res(1(2) dzsoc) = (3 ) (1) sun =0).

which shows that it is the complex differential form, which is connected with the residues.

CAUCHY’S RESIDUE THEOREM. Assume that f(z) is analytic in an open domain Q C C, and let T
be a simple, closed curve in €, run through in its positive direction, such that there are only a finite

number of singularities {z1,...,zr} of f(z) inside the curve, i.e. to the left of the curve seen in its
direction. Then

k
% ﬁf(z)dz = ;res(f(z);zn).

SPECIAL CASE OF CAUCHY’S RESIDUE THEOREM. Assume that f(z) is analytic in Q@ = C\{z1,..., zx},
i.e. f(z) has only a finite number of singularities in C. then

k
> res(f(2);zn) + res(f(2); 00) = 0,
n=1

i.e. the sum of the residues is 0.

Finally, it should be mentioned that since functions like

1 1 1 1
—, , tan z, cot z, - , ,
sin z CoS z sinh z cosh z

tanh z, coth z,

etc., does not have co as an isolated singularity, none of these functions has a residuum at oo.
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Complex Funktions Examples c-6 Residues in finite singularities

2 Residues in finite singularities

1

Example 2.1 Find the residuum of the function f(z) = ﬂ7
22(z —

2z # 0, 1, at the point 0.

Then compute

j{ dz
|z|:% 22(2 — 1) '

We expand f(z) into a Laurent series in the annulus 0 < |z| < 1, i.e. in a neighbourhood of zy = 0.
Then

1

+o00o
1 1 1 1 1
:7:__._:__5 L L
1) 22(z—1) 22 1—2z 22 n:oz 22z :

The residuum is a_; of this expansion, so it follows immediately that

Then
dz 1
= omi = —2ri.
ﬁ|_122(2_1) mres( 2(2’—1)’0) i
1
Example 2.2 Find the residuum of the function f(z) = —————, 2 # 0, 1, in the point 0.

22n (22 -1)’

The function can be considered as a function in w = 22, so the Laurent series expansion from zy = 0

only contains even exponents. In particular, a_; = 0, hence

and we do not have to find the explicit Laurent series in this case.

.2
Example 2.3 Find the residuum of the function f(z) = sm5 Z, z # 0, at the point zg = 0.
z

The numerator sin z has a zero of order 2, and the denominator z° has a zero of order 5, hence
.2
sin” z
f(2) = —— has a pole of order 3 at 29 = 0.
z

If we choose ¢ = 3 in Rule I, we get the following expression,

sinQ,z.O 1 . d? (sin®z
rex (5 0) =g Mo e g

which will give us some unpleasant computations.
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Complex Funktions Examples c-6 Residues in finite singularities

Then note that Rule I gives us the possibility to choose a larger ¢, which here is to our advantage. In
fact, if we choose ¢ = 5 in Rule I, then

i 1 a3 1 1
rex (512—52, O) = zl~>0 dz4 {sm z} = m — ——{sin2z} = 21 hm 23{—cos2z} = —3

Example 2.4 Find the residues at z = 0 of the following functions:

22+ 1 22+32-5
(a) : (b)) ———

z 23

(a) It follows from

2241 1
:—+Z’
z z

that

res(f;0) =a_; = 1.

www.job.oticon.dk

PEOPLE FIRST

Download free books at BookBooN.com

10


http://bookboon.com/count/pdf/364499/10

Complex Funktions Examples c-6 Residues in finite singularities

(b) Tt follows from

that

res(f;0) =a_1 = 1.

Example 2.5 Find the residues at z = 0 of the following functions:

z

W< 0% @

sin z

24

(a) Here, z = 0 is a simple pole, hence by RULE I,

res(f;0) = lir%ez =1.

(b) Here, z = 0 is a double pole, hence by RULE I,

1 d
res(f;0) = T ;i_rgaez:lil%ezzl.

(c) We get by a series expansion of the numerator sin z that

sin 2z 1 23 N 20 1 1 1 N 1 N
- = P A—— —_— .. _ — — — . — — 2 e
z4 24 3! 5l 22 6 z 120
Hence

sin z 0 1
res | ——; =q_; = ——.
24 ! 6

ALTERNATIVELY we apply RULE I, considering 0 as a pole of at most order 4 (the order is in fact
3<4):

S 1 d? 1 1
res <MZ¥;O> =3 2%@ sinz = 8 lii%{—cosz} =—5

Download free books at BookBooN.com
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Complex Funktions Examples c-6 Residues in finite singularities

Example 2.6 Find the residues at z = 0 of the following functions:

@ 22 ) Lelr)

sinz . .
(a) Here, — is an even function, so
z

sin z
res <—5;0) =a_1=0.
z

ALTERNATIVELY we prove this by a series expansion,
sin z 1 23 4 z 1 11 n 1
e O T i R
25 ! 24 622 120

from which we derive that
sin z
res <Z—5;0> =a_1=0.
ALTERNATIVELY we apply RULE I, because 0 is a pole of at most order 5 (the order is in fact 4):
d4

sin z 1 . . 1 .. .
res | —; = lim — sinz = — limsinz = 0.
20 z—0 dz 4! z=0

(b) We have in a neighbourhood of 0 (exclusive 0 itself),

Log(1 1 2 3 1 1
Logltz) 1 f 2, = \_1 1,2
22 22 2 3 z 2 3

SO

Log(1
res (M-()) =a_;=1.
z
ALTERNATIVELY, z = 0 is a pole of at most order 2 (its order is 1), so by RULE I,

=1

Log(1 + 2) 1 .. d . 1
res(T%O = qp i g Los(l+2) = limy 5=

Example 2.7 Find the residues of all singularities in C of
sin z

1 z
(a) 73(27—1)’ (b) Ay (c) m

(a) The function

1
f(z)*m

has the simple poles 0 and 1. Then by RULE I:

res(f;0) = limz- f(z) = im = = -1,
. 1
res(f;1) = lim(z-1)f(z) = lim - =1
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Complex Funktions Examples c-6 Residues in finite singularities

(b) Here we have the four simple poles

ex (zz> ex 23—7r ex 25—7T ex 27—7T
P 1) p 1) P 1) p 1)
If we put
A(z) =z and B(z) = z* +1,

and let zy denote any of these simple poles, then 2§ = —1 for all four of them, and we conclude by
RULE II that

—~

Alzo) _ %
B'(29) 4z

res (f;zo) =

hence

(c) Clearly, the singularity at z = 7 is remowvable, so
res(f;m) = 0.

Since

sin z

—1 for z — 0,
z

the singularity at z = 0 is a simple pole, so
S 1 1
res(f;0) = lim z - f(2) = lim e _ L

z—0 z m™—2Z ™

ALTERNATIVELY we consider z = (0 as a pole of at most order 2, so it follows by RULE I that

1 ~1 47 1
res(f;O):—limi <51nz) :hm{cosz N sin z }:_.

1 2= dz \m—2z =0 | m—2 (m—2)? ™

Analogously we can consider z = 7 as a “pole” of at most order 1. Then by RULE I,

res(f;m) = lim {%} =0.

Z—T
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Residues in finite singularities

Example 2.8 Find the residues of all singularities in C of

zel? 2 +5 e?
— (0) DT (c)

(a)

(z —m) 23—z

(a) The only singularity is a double pole at z = m, so if follows from RULE I that

Zeiz 1 : d iz : iz - iz .
res(m;w>:izlgr;—z(ze ):ZIEI}r(e +ize'?)=—1—im.

(b) The function

245
&= e

has the three simple poles 1, ¢ and —i, and the double pole —1. If we put

3
Az) = 25 and B(z) = 2* -1,

z+1
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Complex Funktions Examples c-6 Residues in finite singularities

where the simple poles zg = 1, i, —i, all satisfy 2§ = 1, then

A 1 345 1 145
res(f;zo):ﬂ:—.z_i.zo—i_ = . +ZO:—+ = )
B'(z) 4 z5 z+1 4 142 4 1+ z
hence
1 1 3
res(f; 1) = Z + 5 = Z’
. 1 i 34 24
vestfil) = gt T T
. 1 7 3—2
es(fimi) = Tt g

Finally, it follows for the double pole —1 by RULE I,

o d 2+5
i) = am i { ey

{ 322 2z (23 + 5) B 245 }

I
g

2+ (-1 (2+1)°(=-1) (
3 2(—1) -4 4 3 1
2-(=2) 22.(=2) 2-(-22 4 2

z——1

CHECK. The sum of the residues is

3.3+2 3-2 9
47 4 4 4

This agrees with the fact that the function has a zero of second order at oo, so the residuum in oo
(the additional term) is 0 in this case.

(c) The poles z = —1, 0, 1 are all simple. Therefore we get by RULE I,

. . e? et 1
res(fi=1) = Jim, (=4 D) = i, o = Ty T e
res(f;0) = lli%zf(z) = ,lii%z?e—il =1,
res(f;1) = lim(z —1)f(z) = lim ﬁ - g

Download free books at BookBooN.com

15



Complex Funktions Examples c-6 Residues in finite singularities

Example 2.9 Find the residues at z = 0 of the following functions:

(a) 2z+1 e®
a) ———— .
2(z3—5)’ sin z

We have in both cases a simple pole atz = 0. As usual there are several possibilities of solutions, of
which we only choose one.

(a) It follows by RULE I,

2z +1 0 I 2241 1
res ( ——=——;0 ] = lim =——.
2(z3—5)’ 2023 — 5 5

(b) In this case RULE IT is the easiest one:

z z
e . e
res| —;0 | = lim =1.
sin z z—0 COS 2

Example 2.10 Find the residuum at z =1 of

, n € N.
2 —1

Here z = 1 is a simple pole, so by RULE II,

1 . 1 1
res ;1) = lim = —.
2 —1 z—1m 1 n

ADDITION. Let 2y denote any one of the simple poles, i.e. zJ' = 1. Then it follows by RULE II that

1 1 20 20 <>
res| ——320 | = ——  — = —.
-1’ nzg*1 20 n

Example 2.11 Find the residues at all singularities in C of

| by EoNE?)

1
@ Eoherey @y “p(z1>'

(a) The poles at —2, —1 and 1 are all simple, hence by RULE I,

1 . 1 1
Y%Gﬁ—ﬁgigfﬁ S e R
1 , 1 1
r“@ﬁn@+m‘0 - MNE TGy T Y
. 1
T%Qﬁnw+m”)::£3@+n@+m:8
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Complex Funktions Examples c-6 Residues in finite singularities

Remark 2.1 Here,

(W?”) e (m“) e (mﬂ) -0

in agreement with the fact that we have a zero of order 3 at oo, so the residuum here (the additional
term) is 0. ¢

(b) The poles are her z =1, 4, —1, —i, and z = 1 is a simple pole, while the other ones are double
poles. Hence by various applications of RULE I,

3
3
3.1 2 — (2 +2) 2
rs(fil) = lm(e_n B DEXD ST T 322 9
SR N EE
z—1

REPTORNY. B 8 il VI G o)
IES(f7 1) - Zl_,_1 dz { (22 —+ ].)2 (Z - 1)2 }

= lim {322(”2)”3—1 2:2:(-1) (342)  2(2°-1) (z+2)}

(22+1)2 (2—1)2 (22_1,_1)3 (Z_l)Q (22_'_1)2 (2—1)3
T2 T 2.(27 2. (-2 16 16 16 16

z—i dz (Z+i)2(2271)2
= nm{?’zz(zw)ﬂ?’l 2(Z3—1)(z+2)2-2z(z3—1)(z+2)}

res(f;4) = lim 3 { (°-1) (2+2) }

(402 (22-1)"  (2+0)? (2>—1)° (244)? (22)°
3240 —i—1 2-(=1—0)(2+14) 4i(=1—i)(2+1)
—4-(=22  =8i(-2)2  —4(-2)p
_ T4 -1-30 2(-1-3) T4 =340 =642 24T
16 164 16 16 16 16 16

res(f; —i) = lim d {—(ZS_l) (2+2) }

sm—i dz (z—1)2 (2271)2

i {322(z+2)+z31 L 2(2°-1) (242)  2-22(°-1) (z+2)}

=i | (2=0)2(22-1)7 (2—i)3 (22-1)° (z—i)2 (22-1)°

—32—i)+i—1 2(-14+)2—19) (—4)(-1+9)(2—1i) — —2-Ti
B ) A AL A T

Note again that the sum of residues is 0.
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Residues in finite singularities

(c) The only singularity here is z = 1. It is essential, so we must expand into a Laurent series from

Z():].,

1 1
exp|—— | =1+ 4oy 2z £ 1.
z—1 z—1

It follows that

1
res (exp( );1) =a_1 =1.
z—1
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Complex Funktions Examples c-6 Residues in finite singularities

Example 2.12 Prove that the functions

(@) —. () —

sin z 1—e*’

only have simple poles in C. Find these end their corresponding residues.

1
(a) The poles of —— are the same as the zeros of sin z and of the same multiplicity. The function

z
sin z has the zeros {p7 | p € Z}, where

d
lim — sinz = lim cosz = (—1) # 0,
zTmadz Z—opT

hence all poles are simple. Finally, it follows by RULE II that

1 1
res < —: p7r> = lim =(—1)7, p € Z.
sz zT ™ COS 2

(b) The poles of T or e the same as the zeros of 1 — e* and of the same multiplicity. The zeros
—e

are z = 2ipm, p € Z, and since

d
e (1—-¢*)=—e*#0 for every z € C,

all poles are simple. Hence by RULE II,

1 1
res <—; 2ip7r> = lim = -1, pEZL.
1—e*

z—2ipm —e*

Example 2.13 Find the residues at all singularities in C of

1
1—cosz’

1
The function T ooss has a (non-isolated) essential singularity at oo, and otherwise only poles in C.
z

The poles are determined by the equation 1 — cos z = 0, thus

(1) 0=1—cosz = 2 sin? %,
the complete solution of which is z = 2prm, p € Z. It follows from (1) that the zeros are all of second

1
order, hence the poles z = 2pm, p € Z, of T coss are all of second order. We then have by RULE I
— oSz
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and L'HOSPITAL’S RULE the following dreadful computation,

1 1 d [ (z—2pr)?
res| —;2pr ) == lim —<{ —-——
1—cosz 1! z—2pr dz 1—cosz

2(z—2pm)(1—cosz)—(z— 2pm)?sinz

- zggzlm (1—cos 2)?
—  lim 2(z—2pm) - 2sin® £ — (z—2pm)? - 2sin Z cos 2
2=2pm (2 sin® 3)
_ 1 lim 2(2’%*2]?7‘()8111%*(2'%72])7T)2COS%
2 z—2pm sin® 5
9 lm (w — pr) sin w-fs(w — pm)? cosw
w—pm sin” w
— 9 lim sinw+ (w—pn) cos w—2(w—pn) cos w— (w—pm)? sinw
w—pm 3sin?w - cosw
_ 2 lim sinw — (w — pr) cosw + (w — pr)? sinw
3 w—pm sin? w - cosw
_ 2 lim cos w—cos w+ (w—pr) sin w+2(w —pr) sin w+ (w—pm)? cos w
3 w—pr 2sinw - cos2 w — sin® w
_ 2 lim 3(w—pm) sinw+ (w—pm)? cos w
3 w—pn 2sinw - cos? w — sin® w
_ 2 lim 3sinw+3(w—pr) cos w+2(w—pr) cos w— (w—pr)? sinw
3 w—pm 2 cos? w—4sin? w - cos w—3sin® w - cosw
= 0.

Remark 2.2 Whenever one apparently has to go through some heavy computations like the previous
ones, one should check if there should not be another easier method. Here it would have been cheating
the reader first to bring the simple solution, so for pedagogical reasons we have first given the standard

solution.

An ALTERNATIVE method of solution is the following: First note that we have for every z € C and

every p € Z that

cos((z + 2pm) — 2pm) = cos(—(z + 2pw) — 2pm),

which is just another way of saying that the function 1 — cos z is an even function with respect to any
2pm, p € Z, so if we expand the function from some 2pm, then it is again even. In a Laurent series
expansion of any even function all coefficients as, 11, n € Z, of odd indices must be equal to 0. In

particular,

1
res <— : Qpﬂ-) =a_1=0 for ethvert p € Z. O
1—cosz

20

Download free books at BookBooN.com



Complex Funktions Examples c-6 Residues in finite singularities

inh
Example 2.14 Find the residues at all singularities in C of 51.n :
sin® z

Clearly, the poles are z = pm, p € Z, and z = 0 is a simple pole. Any other pole z = pw, p € Z \ {0}
is a double pole.

When we apply RULE I, we get

( 5 )
. Zlz+ 5yt
- sinh !

res(f;0) = lim ZoSmhE im 3 — lim =1,

z—0 sin? 2 z—0 23 2 250 , 52 2
Z _ — .. Z 1 —_— — e
(ar) TeT)
and

sinh z 1 .. d [(2—pn)?sinhz . d [ 2%sinh(z + pr)
res | ——;pr ) == lim —¢——5—— ¢ =lim — ¢ —————= ¢ =ai,

sin? z 1! z—pr dz sin” z z—0 dz sin” z

where we to ease matters have put

2?2 sinh(z + pr
(2) #=a0+a1z+-~-,|z\<w,
sin? z

because z = 0 is a removable singularity, and the function has a Taylor expansion in the open disc of
centrum 0 and radius 7.

The task is now to determine the coefficient a; in the Taylor expansion. It is obvious that the usual
definition with a differentiation followed by taking a limit becomes very messy. Instead we multiply
by the denominator, so (2) becomes equivalent to

2?sinh(z + pr) = (ap + a1z +---)sin® 2z = (ag + arz +---) - = (1 — cos 22),

N =

hence after insertion of the series expansions,
2*{sinhprr 4+ coshpr -z 4} = (ag +arz +---) -
:(a0+a12+~--)<z2—%z4+-~-),
which for z # 0 is reduced to
sinhp7r+coshp7r-z+--~=(a0—|—a1z+--~)(1—%+~-~> =ap+aiz+---.

When we identify the coefficients, we get
ag = sinh prw and ap = cosh prm,

so we conclude that

-1 h
res (51.n2 i : pﬂ') = a1 = cosh pm, p e Z\ {0},
sin” z
inh
res (%;0) =1 =cosh(0-7), p=0,
sin” z
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Complex Funktions Examples c-6 Residues in finite singularities

(cf. the above). Summing up we have in general,

sinh z
res (—2 ; p7r> = cosh pmr, p € Z.
sin® z

Example 2.15 Find all Laurent series solutions in a disc with the centrum zg = 0 excluded of the
differential equation

(24 + 22) fl(z)+2 (23 + z) flz)=1,

and find the value of the complex line integral

fjﬂ—l f(z)dz

2

for everyone of these solutions.

First method. Inspection. Let us first try some manipulation,

(24 1) () +2: [} = (2 +1) o (2T} =1

o
Qacha?
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When |z| < 1 this equation can be written

d 2 — 1 _+°° 1n2n

hence by termwise integration in the open unit disc |z| < 1:

+oo
_1)»
2f(z) =C+ Z % 22" = €'+ Arctan z, C € C arbitrary constant,
n=0

and the complete solution in the disc (without its centrum) is given by

C X (-0 ,,_, C  Arctanz
fEO=3 4 gy =t 2

n=0

, CeC, 0<]|zl<1.

1
The circle z| = 3 lies in this set, so we conclude that

% f(z)dz =2mi-res(f;0) = 2wia_y = 2mi,
==

which holds for all of the solutions above.

Second method. The method of series. The coefficient z* + 22 = 22 (22 + 1) is 0 for z = 0 or for
z = +i, and the solution f(z) is analytic in its domain. Therefore, we get by inserting the Laurent
series

f@ =S, )= nanent,
into the differential equation that
(24 4+ 22) f(2) + 2 (2% + 2) f(2)
= Z na,z" 3+ Z na,z" T+ Z 2a,2" 3 + Z 2a,, 2"
Z(n +2)a, 2"+ Z(n + 2)a, 2"
Z nay_ 02"t + Z(n + 2)anz"+1
Z {nan_o+ (n+2)a,} 2"

This expression is the identity theorem equal to 1, if —a_3 + a_1; = 1 and the following recursion
formula holds,

Nan—z+ (n+2)a, =0, forn e Z\ {-1}.

If n =0, then ag = 0 and a_s is an indeterminate. Then it follows by recursion that as, = 0 for
n € Np.

If n = —2, then a_4 = 0 and a_5 is an indeterminate. It follows by recursion that a_o, = 0 for
ne N\ {1}.

It only remains to find the coefficients of odd indices, where we have already proved that

—Q_3 + a_1 = 1
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We have for the odd indices the recursion formulse

2n—1
a2p—1 = T3 a2n—3, n €N,
and
—2n+1
a_op—3 = R — a—2n—1, n € N.

Hence by recursion for the positive, odd indices,

2n —1 nn 2n—1 2n—3

_ _ n (_1)ﬂ
ST Tc i Bl Sty |

T o+ 1

a_y

3 1
5 3

a2n—1 = —

where the corresponding series is convergent for 0 < |z| < 1. This series is determined by the
coefficient a_1.
The analogous coefficients corresponding to the negative odd indices < 3 have a similar structure,

< 1, i.e. the set given by |z| > 1. This

1
corresponding to the domain of convergence given by ’—
z

series is determined by the coeflicient a_3.

o
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. . .. . .
Since a—; — a_3 = 1, and since the curve |z| = = lies in the set 0 < |z| < 1, we must necessarily

have a_3 = 0, and hence a_; = 1. Therefore, the complete solution is in the unit disc given by

—+oo

_ 02 (=D)" 91
f(Z)——+22n+1Z" ; az€C, 0<|z| <1

n=0

1
Since the circle |z| = 5 lies in the set 0 < |z| < 1, we get for each of these solutions that

f f(2)dz =2mia_y = 2mwires(f;0) = 2mi.
2=

1

2

Example 2.16 Find all Laurent series of the form
a “+oo “+o0
ORI S
n=0 n=-—1

which are solutions of the differential equation
d
(z —2%) d—];f(zfl)f(z)zlJrz,

and find the annulus r < |z| < R, in which these Laurent series are convergent.
Choose any constant ¢ € |r, R[. Find for any of the solutions above the value of the line integral

fjﬂ—c f(z)d=.

Ezxpress each of the solutions f(z) by means of elementary functions in the domain of convergence.

1
HinT: Consider e.g. 3 z f(2).

First method. Inspection. The differential equation has the singular points z = 0 and z = 1, so we
may expect that the domain is given by 0 < |z| < 1. In this set the equation can be divided by
1—2#0. Then

df 4 1tz 2
Z~£+1-f(z)—%(z~f(z))—1_2——1+1TZ.

The differential equation can now be written

d 2

(3)

If |z] < 1, then 1 — z lies in the right half plane, so Log(1 — z) is defined for |z| < 1. When we
integrate (3), we get

z- f(z2) = —z—2Log(1l — 2) + C,
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thus

Log(1 —
f(z):€—1—2y, 0<|z|<1l, CeC.
z

We have now answered the last question of the example.

Since
“+oo
1
Log(l —z2) = — Z ] PAE for |z| < 1,
n=0

it follows by insertion that

n+1 n+1

n=1

C = 1 C = 2
=——-1+2 "=—+1 " for 0 < [z] < 1.
f(2) p + ;0 z Z+ +Z z or |z]

This shows that all Laurent series solutions are given by

f(z)—g+1++§ 2 2" 0<|z| <1 cecC
_Z —~ 1 9 9 .

n +

Then it is easy to prove that if ¢ €]0, 1], then

z

j{ f(z)dz)j{ Ed,z:27rires(f;0):27ria,1:27m'-C, CeC.
|z|=c |z|=¢c

2
A VARIANT is to expand T 1 in a series. Then the equation becomes
—z

d

+oo +oo
2 n n
E(ﬁf(z)):—l—i—::—l—&-{;)z =1+2TLZ::12, |z| < 1.

We get by termwise integration in the disc |z| < 1,

+oo

2
2 f(2)=CHz+ ) L |zl <1, CeCc,
:1n+1

hence

f(z)f€+1++f 2 2" 0<|z| <1 ceC
oz —n+l ’ ’ '

Clearly, these Laurent series have their domains of convergence 0 < |z| < 1, when C' # 0, and
|z <1if C =0.

Download free books at BookBooN.com

26



Complex Funktions Examples c-6

Residues in finite singularities

Second method. The method of series. If we put

+oo df “+o00 )
f(z) = Z anz og e = nglnanz

n=-—1

into the differential equation, then

l+z = (2-2°) == (2—1) f(2)

—+o0 +oo “+o0 —+o0
= E napz" — E na,z" Tt — g anz"tt 4+ E an 2"

n=—1 n=—1 n=—1

—+oo +oo

n=—1

+oo
= Z (n+ Dayz" — Z (n+ Da,z"™" = Z(n + Dayz" — Z Nap_12"
n=0

n=—1 n=—1

—+oo

= 1-a0+2a12—0-a,1—1-aoz+Z{(n+l)an—nan,l}z"

n=2
—+oo

= ap+ (201 —ag) z + Z {(n+Day, —na,_1}2"

n=2
Then it follows by the identity theorem that

ag = ]-7
2a1 — ag = 17
(n+1)a, =na,_1 for n > 2.

We get ag = 1 and a; = 1, and then from the recursion formula,

(n+Da, =nap_1=--=2-a, =2, n>2,
thus
2
ay = for n > 2.
n+1

Finally, we note that a_; is an indeterminate, so

+oo

a_1 2
= —+1 " 0<z] <1
fE) =ttt 3 , g

z
n+1

Clearly, the power series has the domain of convergence |z| < 1 = R.

If a_y # 0, then r = 0, so we get 0 < |z| < 1.
Clearly, if ¢ €]0,1[, then

f f(z)dz:% %dz:%ria_l.
|z|=¢c |z|=c

27
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Finally, we have in the given domain,

1
Z 4.
2

i) [ 2+§’:° 1
V4 = —a_ —Z —Z z
2 1T a9~y 1
+oo 1

1 1 1 1 1
— Z 2 a2t -2
n+1 1

2 2
n=0

1 1

2 2

n+1

2
2 2

1
2 2

+o0
—1)" 1
L= YRS VRN SR P S P
n=0

and hence for 0 < |z| < 1,

f(2)

_ L 1-—
_ a1 4, Logl-2)
z z
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Example 2.17 Given

fo) = BT e\ (a ne ).

(a) Find the isolated singularities {z, | n € Z} for f(z), and indicate their type.

(b) Compute the residuum of f(z) in every pole.

(c) Prove that we have for every real ¢ # 0,

| tanh(m{c + it})| < |coth(m c)|, teR.

(d) Assume that a > 0, and let C,, denote the boundary of the rectangle of the corners a, a+1i, —a+1
and —a. Explain why

(4) ?{Caf(z)dz_jéca%dz

is defined, and find the value of this line integral.

(e) Prove that the improper integral
/+°° tanh 7 x
——dzx
—oo 2(14a?)

is convergent, and find — possibly by taking the limit a — +o0 in (4) — the value of this integral.

(a) The singularities are given by z =0, z = ¢ and coshw z = 0, thus 7z = ¢ g +inm, n € Z. Hence,

the singularities are

1
2y =0, 21 =14  and zn—i<n+§), n € Z.

It is almost obvious that z) = 0 and 2] = i are removable singularities, because

T
tanh 7z 1 . tanhwz o 2 .
m-——=—— un—:zhrnC’C’S’h—7r’z:7rz7
2z—0 Z(Z — Z) 7 2z—0 z z—0 1
and
T
— .
tanh 7 2 _ 1. . tanhwmz R cosh®mz T B .
im —— = - lim ——— = —i lim = — = T,
z—iz(z—1)  da—i z—1 z i 1 (coshim)

where the assumptions of I’'Hospital’s rule are fulfilled, and
(cosh(im))? = (cosm)? = (=1)* = 1.

Furthermore, the singularities

1
zn:i(n+§), n €7,
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1
are all simple poles. In fact, ﬁ is er defined for all z,, and for
2(z—1
tanh s — sinh 2z
coshm z

the denominator cosh wz has a simple zero at each z,.

(b) According to (a), the poles are given by

1
z,L:i(n+§), n €7,
and they are all simple. When we apply RULE 11, we get
ros tanhm 2 ; C e sinh 7 z 1 il 1 ~ lim sinh 7 z 1
2(z—0)" ") 2(z—1i) coshmz’ 2)) smi(n+d) 2(z =) m-sinh7z
1 1 1 1 4 1
— = —_—_— — = — —_— Z'
T _’_l 1 T oo Loom 1—dn? "e
ifntg)i{n-3 1
c sing the definitions of the complex erbolic functions we get
(c) Using the definiti f th plex hyperbolic f i g

. . 2 2 o 2 2

I tanh(r{c+ i t})[2 = |sin(m{c+it})| _ cosh (mc) — cos?(mt) - cosh” (7 ¢) — coth?(rc),

~ Jcosh(r{c+it})]?  sinh?(wc) + cos?(rt) ~ sinh®(wc)
hence the estimate,

|tanh(w{c+it})| < |coth(mc)|.

Figure 1: The path of integration Cy and the poles on the imaginary axis.

(d) The path of integration C, passes through the two removable singularities z, = 0 and 2| = i.
Since f(z) can be continued analytically to these points, the line integral

fca f(z)dz

Download free books at BookBooN.com

30



Complex Funktions Examples c-6 Residues in finite singularities

is defined, and we get by Cauchy’s residue theorem that the value is given by

tanh 7 2z 7
% = "%d Qi f(z); -
Ca Z(Z—Z) = Lres ( ( )’ 2

) =2mires (f(z); z0) = 271'1'-é = 8,

™

where we have used that zq is the only pole inside C,, and where res(f(z); z,) has been computed

in (b).
(e) Since

tanh 7 x
— 7 for x — 0,
T

the integrand is continuous on R. Since

tanh 7z 1

f >1
r(1+22)| =~ 1+ a2 or |z = 1,
tanh 7z
it follows that ———— has an integrable majoring function, so
xz(1+22)
/+°° tanh 7w x d </+°° tanh 7w x d </1 tanh 7 x 2d +/+°° dx -y
x —| dx —| dz — 00
z(1+22) |~ ) o |z(1+2?) )| (1 +a?) o 122 ’
and the improper integral
/+°° tanh 7«
——dx
—oo @ (142?)
is convergent.
It follows from (d) that
tanh
5) 8 = 7{ e
c. 2(z =)
/a tanhﬂ'.z dr — /a tanh(w{?+i}) da
g x(x—1) u (z+1i)x

1dt.

' tanh(r{a +it}) . B ! tanh(w{—a + it})
+/O (a-i—it)(a—i—i{t—l})Zdt /0 (—a+it)(—a+i{t—1})

We get by (c) the estimates

/1 tanh(m{a + it})
o (a+it)(a+i{t —1})

| coth(r a)|
a2

-1—-0 for a — +o0,

idt‘ <

-1 —0 for a — +oo.

! tanh(m{—a + it}) ; | coth(ma)|
/0 Cati)(—ati{i—1}) dt‘ ST

Furthermore,

) sinh(ra 4+ 7i)  sinh7a-cosm+1i-coshma-sine  sinh7z
tanh(m{z +1i}) = - = — - = = tanh 7z,
cosh(max 4+ mi) coshmz-cosm+i-sinhme-sine  coshmz
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hence by insertion

/ tanhwlﬂvdx _ / tanh(w{x'—i-z}) d:ﬂ:/ tanh 7 x
—a #(x —1) o (w4 o

1 1
- — .}dfﬂ
€T —1 x4+

% tanh 7o 2 o [* tanhma
= - — dox = 2i —_dx.
—a T z+1 _ax(1+22)

This expression is convergent by the limit a — 400, so it follows from (5) that

“+oo
tanh 7 x
8 = 2i —d 0+0
‘ Z/,0O x(1+22) z+O+0,

and by a rearrangement,

+oo t
/ anh 7 x do — 4
o 2 (1+2?)

.
. .
A\
iy \‘.‘ <
27\
(27777 XX/ b
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3 Line integrals computed by means of residues

Example 3.1 An analytic function f in an open annulus
O={2eC|0<|z| <R},

can be described by its Laurent series:

+oo
f(z)= Z anz", ze .

n=—oo
1) Assume that the function is even, i.e.
f(z) = f(—2), z €.
Prove that a,, is zero for all odd values of n.

2) Find the value of the complex line integral

1
7{ - dz.
|z|=1 zZ smz

1) When f is even, we have in Q,

+o00 too
0= 1)~ f-2)= 3 (1= (172" = 3 2agps.

n=-—oo p=—00
We conclude from the identity theorem that

agpyr1 =0 for p € Z.

2) If we put f(z2) =

——, then
z sin z

7S P T

(—=2)-sin(—z) zsinz

so the integrand is an even function. Then by (1) we have in particular a_; = 0, because —1 is
an odd index. Then

1 1
?{ —— dz = 2mires < - ;0> =2mia_1 =0.
2|=1 % sinz z sin z

Example 3.2 Find the value of the line integral

e
— dz.
j|§2|_2 2(z = 1)?
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It is not a good idea in this case to use the traditional method of inserting a parametric description
and then compute. Note instead that we have inside the curve |z| = 2 (seen in its positive direction)
the two isolated singularities z = 0 and z = 1, hence by Cauchy’s residue theorem,

Now, z = 0 is a simple pole, so it follows from Rule Ia that

z

e® . . e
(T 0) = 1) =

Since z =1 is a pole of second order, ¢ = 2, we get by Rule I,

e 1 o d?t 9 Cod (e® . ef
res (z(z—1)2 ’ 1) ooy Mg {z=1*f()} = Jim o {?} =lm 5 GE-1=0

Finally, by insertion,

eZ
——dz = 2mi.
fiw Az—12 T

ze?

Example 3.3 Compute the line integral flzl_z poa— dz.
=2 2 _

In this case the integrand has two isolated singularities inside |z| = 2, namely the two simple poles
z = +1. This gives us a hint of using Rule II. Put A(z) = ze* and B(z) = 22 — 1. Then B'(z) = 2z,
and it follows by Rule II that

zet [ A2) _ Alz) _zoezp(zo)_l 240
ET ) T BE ) T E ) T 2 2

where zg is anyone of the singularities £1. When we apply Cauchy’s residue theorem, we get

z 1 —1
j{ »2%’_8 dz =2mi{ res(f; 1) + res(f; —1)} = 2mi - cete . 27 - cosh 1.
|z|=2 z2—1 2
Example 3.4 Compute the line integral ¢__ . dz.
|z|=2 41

The integrand has the four simple poles 1, i, —1 and —i inside the path of integration. Then by
Cauchy’s residue theorem,

fz|—2 " dz = 2mi{res(f;1) + res(f; 1) + res(f; —1)+ res(f : —i)}.
When we shall find the residues in several simple poles, “more or less of the same structure”, we
usually apply Rule II. Let 2o be anyone of the four simple poles, and put A(z) = z and B(z) = z* — 1.
Then we get by Rule II,

. 2 A (z0) 0 lzg 1,
res | ——— 120 ) = L = 0 =20 _ _
A1 B’ (20) 428 4zl 47
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hence by insertion,

o
]{ ﬁdz:%{12—1—@'24—(—1)2—&-(—2')2}:0.
|z|=2 -

Example 3.5 Integrate the function

Zeaz
= —, 0<a<l,
f(Z) 1+€Z a

along the rectangle of the corners £k, +k + 27w i, where k > 0. Then let k tend towards +oo in order
to find the integrals

+oo ax +oo ax
ng/ ¢ —dx og J1:/ re —dx.
—oo Lte o 1te

Figure 2: The path of integration Cg and the singularity 7.

az

The integrand £

T+ o has simple poles for e* = —1, i.e. for
e

z=mi+2ipm, pE L.

Of these, only z = wi lies inside the curve C}, for all £ > 0. The function is analytic outside the
singularities, so it follows from Cauchy’s residue theorem for every k > 0 that

> 0% 2 0% ,L'eaﬂi .
(6) dz =2mives [ ——— ; mi ) =21 — = 272 T,
c, 1+¢e? 1+e* er’

in particular, the value does not depend on k > 0.

On the other hand,

az k azx 27 -0\ ya(k+it
k + it)ealk+it)
(7) j{ c dz = / re dﬂ?—‘r/ %idt
c, 1t+e? _p l+e” 0 1+ et
/k (x 4+ 2m’)ea(w+2m‘) p /27r (—k + it)ea(—k-&-it) -
— - X — . (3 .
—k 1+ eT+2mi o 1+ efk+zt
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Since 0 < a < 1, it follows by the magnitudes that

+oo ax +oo -\ a(z+2mi)
xe (z + 2mi)e
/_O<> o dx and /_OO T eriom dx
exist. We have furthermore the estimates
27 . a(k+it) ak
(k + it)e™ ) (k +2m)e
/O Wdt§T27T—>O fOfk—)"‘OO,
and
2m i) pa(—k+it) ak
(—k +it)e ) (k +2m)e
A 1_+_efk+it STQTFHO fOka‘FOO.

Hence by taking the limit & — 400, we conclude from (6) and (7) that
5 0% B /+oo T e /+OO (fE + 27Ti)ea(1+27ri)
- oo 1+e® e 14+ er+2mi

+oo ar +oo ax +oo ax
Te : Te : . e
= / —dx — 62”‘”/ —dx — g2rat . 27rz/ —dz
oo l4e oo l4e oo lH4e

“+o0 ax “+oo ax
= (1-¢e") / fjj —dx — 27 - 62’”“/ 11 — du,
_ e e

oo — 00

272%™t = lim

dx
k——+o00 Ch 1 + e*

i S

S [ HE-
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e
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. . . aﬂ'l
so by a division by e®™",

) ) +o0 T ed® .t ea
or? = — (e”‘“ — e_’““) / dx — 2mi - e’”“/ dz
Lo LAte* B
+oo T e +oo 0T
= —2isin aw/ dx — 2mi(cosma + i sinma) / dx
oo lH4e* oo lH4e*
) +oo 0T ) ) +oo T %% +oo 0T
= 27 -sinar —dz — 2i {sinar —dz +m cosam —dz .
s Llte o 1€ oo 1+e
Then we get by separating the real and the imaginary parts,
+oo 0T
2712 = 27 - sin aw/ —dz,
oo lHe
and
+o00 ax +oo ax
xre e
sinaw/ mdm—l—ﬂ'-cosa?r/ —dz = 0.
Ceo lHe feo lHe
Finally, we derive that
+oo ax 2
e 2 T
J(] = / ——dr = . = )
R 27 -sinam  sinam
and
J /+°° x er T COS am /+°° e T COs am ™ 72 cosam
= €XrXr = ——— €Tr = — . = — .
! oo 1 t+e€* sinar J_,, 1+e* sinawr  sinam sin? am
Example 3.6 Compute the complez line integral
1
z|=2 (z — = ) cosz
2
The analytic function cos z has the simple zeros
™
z = ) + nm, n € 7.
Hence the given integrand has infinitely many (simple) poles outside |z| = 2. Inside |z| = 2 the
. ) T m
integrand has a simple pole at z = —3 and a double pole at z = +§. Except for the poles, the
function

1
f(2)= 77—
(Z* 5) COS z

is analytic. Then by the residue theorem,

ji'_Qi(z_iz :27ri{res(f;g)—i-res(f;—g)}.

5) COS 2
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Figure 3: The curve |z| = 2 with the two poles insider.

Determination of res (f; —g) The pole z = —g is simple. Apply RULE II where e.g.

1
A(z) = = and B(z) = cos z.
73
Then
T
es(f W) A(—g) 1 1
T s —— ) = = = ——
) D )
2 2 2
ALTERNATIVELY we apply RULE 1. Then
1 + 3 1 1
res(f;—z) = lim_ Tr.z 2= —
2 Fo-3 22— 5 COSZ B Wcosz—cos(—g)
T D
1 ! _ b1
o7 [-sinzl—_z @

lim, ,_ = — cosz
2 dz

Determination of res ( f; z). Here we shall demonstrate a seldom application of RULE III, where

A(z) =1 and B(z) = (z - g) COS Z.

Then A’ =0, and
B'(z) =cosz — (z - 5) sin z,

B"(z) = —2sinz — (z - g) cos z, B" = -2,

B"(z) = =3cosz + (z - g) sin z, B" =0,
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hence
res(f. >i — ) —

. (,
9 3 (B”)2 - 3-(—2)2 0.

ALTERNATIVELY (and more difficult) we use RULE I and I’Hospital’s rule (or possibly o-technique)
with

T T T
z— = z— = z— =
_ 2 2 _ 2
9(2) cos z ( )_ ( W)’
sin (= — z sin (2 — =
hence
T
P
T
9(3)="-lim - ( 27T>_ 1,
2 sin (2 — =
2
and

™ =3 ™
g(z) g<2> —= +1 z 2+cosz T(2)

P i = _<z—g>-cosz_N(z).

. . ™ .
Since cos z has a simple zero at z = 57 the denominator

and we conclude that

e ()]

and therefore,

1o 9(@—9(%)_1 T(x) _,
res(f, >7ﬁg (5)*23% Z_g 7z1ﬂm%N(Z)f
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ALTERNATIVELY we apply I’Hospital’s rule recursively, since

T(z) =2z— % +cosz, T (%) =0,
N(z) = (2= %) cosz, N (%) =0,
T'(z) =1—sinz, T (%) =0,
N'(z) =cosz — (z — %) sinz, N’ (%) =0,
T"(z) = — cos 2, T" (%) =0,
N"(z) = —2sinz — (2 — §) cos z, N" (%) =-2,

and we conclude again that

. T(z) 0
Zhing N(z) =50

Finally, we get summing up,

sz|=2 % :2m'{res (f; g) + res (f; —g)} = 27 {0_ l} — 9

s
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Example 3.7 Compute the complex line integral
2z _ ,z+1
=2 (2 —1)

The integrand has a pole of at most order < 5 at the point z = 1 (the order is actually 4) inside
|z| = 2, so we get from RULE I that

e?* — Tl 2mi t
- e ; . : z z+1
j|{| R dz = 2mires(f;1)= o imi oA (¥ — ")

_ 7r_z . (2462 - 1+1) _ 157 02 5me?
12 12 4
ALTERNATIVELY we may apply RULE I with ¢ = 4 instead,

622 _ eerl 2 d3 e?z o eerl
L dr=2mi- 1) = lim o )
fjﬂ_g (z—1)% 2= 2mi-res(fs 1) 31 =1 423 < z—1 )

It is possible with some difficulty to get through these computations, but it is not worth it here. The
message is that we gain a lot by pretending a higher order.

ALTERNATIVELY we use that we here also have
res(f; 1) = —res(f; 00).
It is actually possible directly to find res(f; co), but again the computations are rather difficult.

ALTERNATIVELY we expand

2z z+1

g(z) =e** —e ud fra z = 1.

as a series. The Taylor coefficients are

g(z) = e — e, 9(1) =

g'(z) =2e% —e* L g(1)=

g”(z) = 4e2% — ez+1, ”(1)‘?36
9(3)(2) — 8¢2% — ez+17 9(3)( ) _ 76
g@W(2) = 16e2* — e*t1, g@® (1) = 15€2,

so the Laurent series expansion becomes

glz) _ 1
(-1 (-

From here we get

g {0+%(z—1)+32i!(z 1)? +73—'( —1)3+1if (z—1)4+---}.

fz) =

15¢2 15¢2 5e?
res(fil) =a == = 5= 5

hence by insertion,

622 _ ez—i—l ) 57T€2 )
————dz =2mia_1 = 1 - 1.
[z|=2

(z-1)°
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Example 3.8 Given the function

f(z)= (a+bzz)_m,

where z € C is a complex variable, and a, b € Ry are positive, real numbers, and m € N is a positive
integer.

() Find the singular points of the function f(z), and determine their type.

(b) We shall expand f(z) as a Laurent series in the set

a
— 4/ R.
4 z\/;’<

Find the largest possible R.
Then find the Laurent series and prove in particular that

0<

(=1)m=1(2m — 2)!

b {(m — 1)1)2 (2\/;>m

(c) Prove that

a_1 =

lim / L =0
R—+oo Jo, (a+022)" 7
where Cr denotes the half circle z = Re®, 0 < 0 < 7.
(d) Find

I: /+Oo dixm
0 (a + bx?)

(a) It follows from

2 _p(24 %) 2 N 12
a+ bz fb<z +b)b(z i b)<z+z b)’

that

F(2) = —— e = & -
(@547 <zz\/%) (z+i %)

a

showing that z = +i are poles of order m.

S

(b) Now,
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Figure 4: The domain of analyticity for a = b > 0.

so it follows from the figure that g(z) is analytic in the open disc

a a
C — iy - 24/ = ¢ .
{26 ‘z z\/;< b}

a
Hence, g(z) has a Taylor expansion from the centrum zo = z\/; of this disc, and the maximum

a
radius is R = 2\/; . We conclude that f(z) has a Laurent series expansion in the set

a a
I 2./ =
4 Z\/;‘< \/;’

where R = 2\/% 1S maximuin.

0<

Assume that

a a
0 — iy = 24/ —.
< |z z\/;‘< \/;
Then
1 1
flz) = =

—m
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hence by the binomial formula,

1 1 “+o0 —m
e ()

—_
S
I
|
~.
> Q
~

o (z—i %)m (22\/%) 2i %
Since
( _n; ) _ (7m)(,m,11.)2......(;m—n+1)
_ (_Un.(m+n—1)(7r77;!+n—2)"'m,E;”;:Bi
- (1)”~%—(1)” ( an_l )
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it follows by insertion that

f(Z) = . : m X

—+o0
—1)mtp 2 —1)! 1
_ Z (=D m+p—1)! (z—i

p=—m bm .(erP)!(mfl)! (22_\/§>2m+p
b

+oo - fa p
= Zap(z—z g),

p=—m

SRS
~——
S

which is the Laurent series expansion of f(z) in the set

a a
_i ]z 2,/ =
z 7/\/; < \/;,
. /a . a
of centrum z\/; and radius R = 2\/;.

0<

In particular, a_; for p = —1, i.e.
A 1 (2m — 2)! (—1)m-1 1 2m — 2 1 1
e (m =) (m— 1) A"t by, \ o m—1 a2
(=/3) (=/3)

(c) We get from

1 1 a
< = s
la +b22| = (bR% —a)™ for 2| = B > \/;’

the estimate

1
< lim e - =
= it Ry T

lim / _dz
re Jo (@t 02"

proving that

. dz
R—+o0 Jo, (a+ b22)
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Figure 5: The curves I' 5 and C 5 for a = b.

(d) Denote by I'g, where R > \/E, the closed curve shown on the figure for a = b > 0 and R = /2 >

b
\/E\/Tl.Then
b 1
dz _ . Ja . 2 [ 2m — 2 1
famamr = () - = (0 ><2a
2 [ 2m -2 1 b Ja s 2m — 2 a
T\ m—1 ) 22me1 gm\[p T 22m=2gm \ m—1 b

im 4 F oy [ o [ d
R—+o0 Tr (CL+ bzz)m o R—+oc0 Cr (a—l—bz2)m R—+oco | _p (a+ b{IJ2)m

oo dx oo dx
= lim 2/ T oym = 2/ o
R—+oo  Jo (a4 bx?) o (a+0bx?)

and we conclude that

I_/+°° de o2& 2m — 2 a
) (a+ba2)™  22mgm \ m—1 b’

because the improper integral of course is convergent.

On the other hand,
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ALTERNATIVELY, the difference of the degrees is 2m > 2 where the denominator is dominating,

a
and since none of the poles :I:i\/; lie on the z-axis, we conclude by a theorem that

- /JmL_l/ﬁoL_l i - res ;Z\/E
Jo (a+bx™ 2 ) (a+bx2)" 2 (@+b22)"" "\ b

= mi-Tres

o 1 - dm=1 1
T (m=1)! .,z dzml (o
(m=1) Vi <z+i )
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thus
oo dx ) 1 . -m)(=m—1)--- (—=m—m+2)
D= ) ey "o e e NG
)
b
om (=)™t (2m=2)! 1
b (m=1! (m—1)! a2t
(2y3)
b
i 2m—2 1
- e () ,
b m—1 922m—1, ;2m—1 ﬂ g

Example 3.9 Given two polynomials P(z) and Q(z), where the degree of Q(z) is at least 1 bigger
than the degree of P(z). Let z1, ..., z, be the different roots of Q(z). Then it can be proved that the
inverse Laplace transform of

is given by
(8) f(t) = Z res (eZtF(z) ; zj) , fort >0,
j=1

where we consider the variable t as a parameter.
Assume given the formula (8). Find the inverse Laplace transform f(t), t > 0, of

1
(22 +1)*

Describe the function f(t) in the real, i.e. such that the imaginary unit does not occur.

Since
1

(22 + 1)
has the two double poles +i, we shall only find

f(t) =res <m ; z) + res (m, —i) )

We get by RULE I,

o et ‘ 1 y d et y te*t 2%t
T S — Y ) = — 111m — = 111m -
(22 + 1)’ Uemidz \ (2 +1)2 =i | (z+1)2  (2+1)3

F(z) =
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res 7€Zt 5 —1 l lim i et = lim te”! — 27
(22 +1) eotidz \(z—1)2) 2==i|(z—9)2 (z—1)3

te et

hence by insertion into (8),

1 . i 1 . T 1 1. . . 1 1 . .
t — — ¢ it 7 lt__t —it - —lt:__t - it —it - it —it
Uy 1t Tae Tate e A GRS R R TR G

= L t t+ L t
= 5 COS B smt.
ALTERNATIVELY we may apply RULE 111, thus

6A/B// _ QAB///

res (/3 20) = =

If we put

A(z) = et and B(z) = (2 + 1)2 =24 422241,

then
A(Z) — BZt, A(Z) — €it, A(—Z) — 67“,
Al(z) = te™, Al(i) = te®,
B(z) = 2" + 227 +1, B(i) =0, B(—i) =0,
B'(z) = 423 + 4z, B'(i) =0, B'(—i) =0,
B'(z) =122 + 4, B"(i) = -8, B"(—i) = -8,
B®)(2) = 24z, B®) (i) = 244, BG) (i) = —24i,
hence,
et ‘ 6t e’ - (—8) — 2eit - 24i Lo iy
res 531 5 =——te e
(22+1) 3(—8) 4
and
et , 6t e . (—8) — 2e i . (—244) 1 PR A
. — = __¢ —1 o1
res (7(22 n 1)2 ; z) 3(=8)? 1 e "+ 1 e,

and we proceed as above.
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Example 3.10 (a) Find the complete solutions of the differential equation

1

O) £/ =2 f6) -

in the domain Q@ ={z € C||z| > 1}.
HINT: Find e.g.. f(z) =Y anz™ as a Laurent series solution of (9) in Q. It will be advantageous
1

1 mn .

z+

to use the Laurent series expansion of

(b) Prove that there exists precisely one solution fo(z) of (9) in Q, such that fo(z) is bounded at co.
Express fo(z) by elementary functions without using sums.

(c) Compute the line integral

%Zl—Q fo(2) dz.

(a) Tt follows by inspection that if z # 0, —1, then

_— lZf/(Z)—if(z):M:i(M)

L1 2 z 22

Thus, for z| > 1,

z z z+1 1+z =z z

because we only have

z+1
pr Rl a e Ry U {0},
when z = €10, 1]. Hence the function

+ «

1 1
Log <%) = Log (1 + ;)

is analytic in 2. The complete solution is then
1
f(z)=c-z+z-Log(1+ -], |z2| >1, ceC.
z

ALTERNATIVELY, assume that f(z) has a Laurent series expansion

“+oo
flz)= Z anz" for |z| > 1.

n=-—oo

Then by insertion,

1 +o0 +oo 400
() - Z f(z)= Z napz""t — Z anz" "t = Z (n—1a,z""".
n=-—o00 n=—oo n=—oo
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Furthermore,
+oo +oo
1 1 1 1 1 L
_Z+1:_;—1:_;§ (_1)’(1;: (_1)n 1Z n 17
1+ — n=0 n=0
z

so if we on the left hand side write —n instead of n, the we get the following equation,

+oo +oo
Z (_n _ 1)a_nz—n—1 - _ Z(_l)nz—n—l.
n=-—oo n=0

The Laurent series expansion is unique, so we conclude that

(="

(—n — Da_, = —(—-1)", thus a_,, = ——, n € Ny,
n
a1 an indeterminate, (corresponding to n = —1),
a, =0 for n > 2.
The formal series is given by
+oco +oo n+1
(—1)" 1 (—)n+ 1 1
A S R L 1+=,
alz+;n+1 e alz—l—z; i s a1z + z - Log +z

which of course is convergent for

1
—' <1,ie. for |z| > 1.
z
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(b) If |z| > 1, then
—+oo
(=n" 1
L Z) = — L=
: og( > ZZ Z n+1 27

and it follows that

1imz~Log( +1> (=1° _

z2—00 z 1+0

When z — oo, the term ¢ - z is only bounded if ¢ = 0, so the wanted solution is
1
fo(z) =z - Log 1+; :

(¢) The circle |z| = 2 lies in the domain of analyticity €2, so it follows from the Laurent series epansion
that

1 1
]{ fo(z)dz:]{ z - Log (1+—> dz=2mia_y =2mi- <—§> = —mi.
|z|=2 |z|=2 z

Example 3.11 Given the differential equation

(10) (2 = 2) f"(2) + (52 = 4)f'(2) + 3 f(2) =

(a) Assume that (10) has a Laurent series solution f(z) = > anz™. Derive a recursion formula for
the coefficients a,, and prove that a, =0 for n < 4.

(b) Then find all Laurent series solutions of (10), and express each of them by elementary functions.

(¢) Find the Laurent series solutions which have a pole at 0, determine the order of this pole and the
residuum at z = 0.

First method. Inspection. This solution method does not follow the text, so we must be careful to
have answered all questions.

We get for z # 0 by some simple manipulations that

0 = (F=2)f" (52—4)f/()+3f()
= {(-*- ) (22—1 (z)} +{Bz=3)f'(2) + 3 f(2)}

d ,
- {(z> - z) f (z)} + E {3(z=1)f(2)}
_ d%{zzal Bf(2) + 322 (2 ))}

{z—li ng(Z))}

(=
- (
dz 22 dz
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Hence by an integration,
z—1d
z dz

so z# 0 and z # 1,

(z3f(z)) = ¢y, ze€ C\{0}, ¢ €C,

6123

z—1

C1

d
- (Zf(2) = =alz+1)+

z—1
c
When we integrate —11, we have two possibilities:
- _

1) In the first case we shall check the choice of ¢; Log(z —1). This function has a branch cut along
the half line | — 0o, +1[. In particular, every circle of centrum at 0 will intersect | — oo at least
once. This means that Log(1 — z) does not have any Laurent series expansion in any annulus,
so we have to reject this possibility of solution.

2) The second choice is ¢; Log(1 — z) of the branch cut along the half line ]1, +oo[. In this case
we already know that

+oo 1
c1Log(l—2) = —c; Z - 2" for |z| < 1,
n=1

and we even get a power series expansion. Hence, we shall choose this primitive in the following.

We get by another integration that

2
2Bf(2) = (% + z) + ¢1 Log(l — 2) + ca, z € C\ ({0} U [1,+o0]),
hence
f) =2+ Slogl-2)+ G+ 25, 2eC\ ({0} U [1+ ).

When we insert the power series expansion, we get for 0 < |z| < 1 that

o Co C1 +OO]. n 1 2 _CQ C1 A 1 n
UCHEE A A RO SFL SR L - - A R DL

n
In particular, ag = 0 for n < —4, and if ¢o # 0, then 0 is a pole or order 3. If ¢co = 0, then the
singularity at 0 becomes removable.

8

= 2—012 z", 0<|z| <1

According to the above we have a_; = 0, so res(f;0) = 0 for any such solution, and we have
answered all questions with the exception of determining the recursion formula, which does not
give sense any more.
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Second method. The standard method, i.e. the series method. By inserting a formal Laurent series

flz) = Z anz"
and its derivatives
fl(z) = Znanzn_l and  f(2) = Zn(n —1Danz""2,

we get

0 = (2°=2)f"(2)+(B2—4)f(2) +3 f(2)

D n(n—1)anz"=Y n(n—1)anz""" +> bnanz"—> 4na,z" '+ 3a,2"
> A’ —n+5n+3} anz" = n(n+3)anz" "

= ) (n+1)(n+3)anz" = n(n+3)anz"""

= Y A+ (n+3)an—(n+1)(n+4)an1} 2"

> (n+1) {(n+3)an — (n+4)an i1} 2"

Then apply the identity theorem to get the recursion formula
(11) (n+ D) {(n+3)an — (n+4)an+1} =0, for n € Z.
The strategy is first to check the obvious zeros of the factors in (11).

If n = —1, then n+1 = 0. This implies that a_; and a( are independent of each other, so for the
time being they may be chosen arbitrarily.

Remark 3.1 We shall later see that we get a condition on a_;, while ag is an arbitrary
constant. However, this cannot yet be concluded. ¢.

If n # —1, the recursion formula is reduced to
(12) (n+3)a, = (n+4)an1, neZ\{-1}.
For n = —4, then a_4 = 0. Put b,, = a_,, and derive from (12) that for n € N\ {1},
(n—3)b, = (n—4)by—1.
We get by recursion for n > 4,
(n=3)a—p=Mn—=-3)bp,=nN—-4bp_1=--=(4—4)by_1 =0,

so we conclude that a,, = 0 for n < —4. There is no restriction on b4_1; = a_3, so this we also
consider for the time being as an arbitrary constant.

If n = —3, then it follows from (12) that
a_2:O~a_3:0.

We conclude that a_g3 is indeed an arbitrary constant, which can be chosen freely.
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If n = —2, then
0=(—2+3)a_z=(—2+4)a_q,
so a_; = 0. In particular,
res(f;0)=a_1 =0

for every convergent series solution.
The case n = —1 has already been treated above.
If n € Ny, then it follows from (12) that

(n+4)an41 = (n+3)a, =--- = (0+3)ap = 3ao,
hence

a, = 3 a for n € N

n*n+3 0 0>

and we have found all coefficients.

Summing up, the formal Laurent series solutions are given by

3
n+3

z",

+oo
(13) f(z) = 5" +a0 )
n=0

and it follows that the domain of convergence in general is 0 < |z| < 1 for a_3 # 0 and ag # 0.
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Complex Funktions Examples c-6 Line integrals computed by means of residues

SPECIAL CASES

If a_3 = 0 and ag # 0, then the domain of convergence is |z| < 1.
If a_3 # 0 and ag = 0, then the domain of convergence is C\ {0}.

If a_3 =ap =0, then f(z) =0 and the domain of convergence is C.

Finally, we shall express the series :i% = z™ by elementary functions. If we put
n
+oo 3
_ .3 n
then we get for |z| < 1,
=1 =1 =1 3 3
_ n+3 __ n __ n n __ 2
g(2) _37;)71—1—32 —3;52 —3;52 —3z—§z = —3Log(1 —2) — 3z — 2%
thus
— 3 9(2)
f(z) = a_3z°+ap 3
a_; Log(l—2z) 1 31
14 = — - —_— = ——= 1
(14) g 3a0{ po 2755 0<|z] <1,
in agreement with the solution by the first method with ¢, = a_3 and ¢; = —3ay.

According to (13) (and not (14)) the Laurent series solutions which have a pole at z = 0, are given
by a_g # 0. The order is 3, and since (13) does not contain any term of the form a-1 (i,e.a_1 =0
z

for all solutions), we have

res(f;0) =a_1 =0.
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Complex Funktions Examples c-6 The residuum at co

4 The residuum at oo

Example 4.1 Find the residues at oo of the following functions,

@z o (+2) @

24 —1
has a zero of first order at co, we get

4

res(f;oo):—nli_>rr;02~f(z):—zllrgoz — ——zli_{{)lo =L
A
(b) It follows by the binomial formula that
2\" 16 32
<z+;) :Z—4+Z—2+24+822+z4, for z € C\ {0},

which we may consider of a degenerated Laurent series in a neighbouhood of co. It follows from
a_1 = 0 that

res(f;00) = —a—1 = 0.
(c) Since
res(f;0) +res(f;00) =0,

it follows by a rearrangement that

res(f;00) = —res (?; O> =-1

ALTERNATIVELY,
1 1 1
res(f;00) = —res (—2 f (—) ;0) = —res <exp (Z) ; O) =1,
V4 z z
because
1 1 1=X11 1 1 11
> poli o= T Emt53 f 0.
zesz zzn!z" 2 22+223+ or z #

n=0
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Complex Funktions Examples c-6 The residuum at co

Example 4.2 Find the residues at oo of the following functions:

@ O S (O g, meN
a) ———=, —_—, ¢) ——, n .
z(1-2?) (22 +1)° (1+2)"
(a) The function f(z) = ! has a zero of order 3 at oo, so
i ) zer ,
1
res (m 3 OO) =0.

ALTERNATIVELY,

1==

z

1 1 1 . z
res m,oo = —res ;ﬁ, 0| = —res m, 0)=0.

(b) The Laurent series expansion of the function

224

(22 +1)°

only contains even powers of z, so a_; = 0, and thus

4
res | ———— ;00| =0.
(22+1)

(c) Tt follows by the rules of computation,

1 2n
22" 1 (2) 0 N 1 0
s [ YV e | LN g 2, R
N+ ™ = ( 1)"’ S\ G

flz) =

. 1 o dn+1 1 __# o 1y 1.n(n—|—1)--~(n+n+1—1)
n 1 (2n)! n 2n
= 1 .(n+1)!.(n—1)!:(_1) (n—l)'

ALTERNATIVELY, z = —1 is the only finite singularity, so
res(f; —1) + res(f;00) =0,

and then by a rearrangement and RULE I for the residuum at a finite point,

722” ; 00 = —res i _ — 1 im d! 420
res <<1 +z2)n’ > o <(1 +2)n”’ 1) = 1) ZLA dzn—1 ( )
= *n_#l)!~2n(2n71)~~(n+2)~(—1)”*1
= D" g - Y <n1 )
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Complex Funktions Examples c-6 The residuum at co

Example 4.3 Prove that z = 0 is an essential singularity of exp (2’2).
Then find

res (exp (z72) ;O) and res (exp (z72) ;oo) .
It follows from
1 B +oo 1 ; c
exp | — —nzzoa or alle z € C\ {0},
that

1
G_op = ] # 0, for n € Ny,

proving that 0 is an essential singularity.

Since a_; = 0, we have

1
res (exp (z2> ;0) =a_; =0.

Here z = 0 is the only finite singularity, so

res (exp (12> ;oo) = —res (12 exp (22) ;0> =0.
z z
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Complex Funktions Examples c-6 The residuum at co

ALTERNATIVELY we get by RULE IV,

I‘ i . —_ — i 2 . p—
es | exp 2 ;00 | = —res 2 exp(z),O =0,

because
1 =1
2\ _ 2n—2
;exp(z)—z%)mz for z #£ 0,
e

and it follows that a_; = 0.

Example 4.4 Find the residues at oo of the following functions

@ -1 m AL <22+Z—12>Sinz.

23 — 25 2+ 1

(a) We see that
1 1 1

23 _ 55 b 1
==
z

has a zero of order 5 at oo, so

1
res <m, OO) =0.

2

1
(b) Since z has a zero of first order at co, we get

2 +1
2241 . 2241

res| ——;00 ) =— lim z- =—1.
23 +1 z2—00 23 +1

(c) It follows by a series expansion of sin z in the neighbourhood of co that

1 1 1
224+ = )sinz=2%sinz+—-— =2+, z #0.
22 z 3!

The power series expansion of z%sin z is convergent in all of C, so the Laurent series of 22 sin z is
equal to the power series, and it will not contribute to the negative indices. Therefore,

2, 1 .
res 25+ — |sin; 00 ) = —a_y = —1.
z
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Complex Funktions Examples c-6 The residuum at co

Example 4.5 Find the residues at oo of the followingfunctions:

22+z2+1 e? 1
— b) 55— - .
@ ST O agrg © eofs])
224+z2+1
(a) Since I has a zero of first order at oo, it follows from RULE IV that
22(z —
2 1+ ! + :
2 1 1 - -
O (i VO IR i R =Y
22(z —1) z—o0 22(z—1) Fmo0 g 1
z

(b) Since we have only a finite number of singularities in C, and since the sum of the residues is zero,
we get

res(f;00) = —res(f;0) — res(f;3i) — res(f; —3i).

Here z = 0 is a double pole, so

1 [d e? e® 1
0= [ £ {5 ] [Fre )] Lo

Since z = +3i are simple poles, we get

o3 e3i 1 3
.3' — = = T s I
res(f; 3i) (30)2(3i + 3i)  —27-2i 271 2
o—3i e—3i 1 e3¢
. _3 — = = =" )
res(f; —31) (—3i)2(—3i — 3i)  27-2i 27 2
hence
1 3i 3i 1 1
res(f;oo):___ﬁ{_e 2: }__§+2_73m3

ALTERNATIVELY one may try RULE IV,

1 1 22 exp (1
= (8(2)0) o (535820)

which, however, does not look promising. It should be mentioned that it is possible to find the
Laurent series from zy = 0; but the calculations are far more difficult than the argument above.

(c) We have for z # 0,

1 +oo 1 1 n +o00 1 n n
i - _ - — — 2j—n
emG+J_zm@+J_§;ﬂlxj)z ,

n=0 "
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Complex Funktions Examples c-6 The residuum at co

so the coeflicient a_; corresponds to those terms for which n = 25 + 1, thus

» o> 2j +1 = (@n+1)
e :_EW( )= X e

- Y
T e+
= nl(n+1)!

By using the definition

oo -1 z 2n+n
Jm(z)zm (5) ; m € No,

n=0

of the Bessel function of order m it follows that

~ 1 —
res(f;00) = —;m =1 J1(21).

Example 4.6 Prove that

e‘ﬂ'z ez
C da=mi, (b Ay ——
(a) 7%:1 Ry ( )}{Z:I s dz=mi

(a) The integrand has simple poles at zg = :i:%. Put

A(z) =€ and B(z) =422 +1.

Then, using that 428 = —1, we get in each of the two cases of zo,
A (ZO) er=o 1 1 Tz Tz
B’ (ZQ) n SZO N 4_28 . 5 e N _5 “0¢ '

Hence,

PR (.ﬂ')_ i1
res ,2 = 26Xp 22 = 42—4,

res (f; —%) = % exp (-i g) = % (=) = %

Since both % and —% lie inside the circle |z| = 1, we finally get

Tz ) ) 1 1
|z|=1
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(b) We have inside |z| = 1 a pole of order 3 atz = 0. It follows from

+oo 1 )
= =) =" zeC\{0},
n=0

23 n!
that
1 1
S 'O = _ = —_— = -
res(f;0) = a1 = o =,

hence
e* . ) )
% — dz = 2mi - res(f;0) = 2mi - a_y = mi.

\

z|=1 <

Example 4.7 Compute f\2|_2 %1 dz.
=21

This integral was previously computed in Example 3.4 by Rule II. We shall here show that it is much
easier to use Rule IV instead, because

" z * z z 22
dz = — % 4z = —2mi-res oo ) = 2mi- i —0,

where f* denotes that we have changed the direction of the path of integration f; ceedz = — f(: e dz.
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Example 4.8 Prove that

foo e
Idl(%+z__)

4

The poles of the integrand are given by

S VY U B
FTToEVETT e
thus
1 3
z1 = 3 and 29 = —5

e . e® 1 27 . d e®
% ————dz = 2mirtes| ———— ;5| = lm — ¢ ———
|z|=1 3 2 11 .=l dz 3
4 2
e e? 1 2
= 2w li -2 = 21t === =0.
Ty =Ty

Example 4.9 Prove that
dz e? 4 sin z
(a) jl{ — =0, (b) j{ ——dz = 2.
12)=3 2(z — 1) |2|=1 z

(a) The poles z =0 and z = 1 lie inside |z| = 3, so

]{4—3 % = 2mi {res (ﬁ ; 0) + res (ﬁ ; 1>} =2mi{—-1+1} =0.

ALTERNATIVELY we have a zero of second order at oo, hence if we let f* denote a closed path of
integration of negative direction, then

%4_3 Z(Zdizl) T ]{:_3 % = —2mi - Tes (ﬁ, oo) =0.

(b) The simple pole z = 0 is the only singularity inside |z] = 1, so

z . z 3
]{ & S = omi - res <e+ﬂ§ 0> = 2mi {¢’ +sin0} = 2.
|z|=1 < i
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Complex Funktions Examples c-6 The residuum at co

Example 4.10 Prove that

dz mi sin z
) 72_2 (—1)(z+3) 2’ (b) i e dz=0.

(a) Here, z =1 is the only singularity inside |z| = 2, so

fiﬂ#@‘ﬁ%:%ﬂ.r%(m;l) :2772'-22%1'.

(b) Here, z = 7 is the only singularity inside |z| = 4 (notice that m < 4), and since 7 is a pole of at
most order 3 (it is actually only of order 2), it follows by RULE I that

- 2

sin z : . . - .

————dz=2mi - = lim — sinz = i lim (—sin z) = 0.
s G i g i

Example 4.11 Compute each of the following line integrals
23 —3z+1 cos z dz
(a) 7{ ——dz, b) — dz, (c) 7{ —_
2=z (2 —1)? ( lo—1)=2 27 2|=3 24 — 1

(a) Here, z =i is a pole of at most second order inside |z| = 2, so

dz = = lim — (2* — 3z + 1) = 2mi lim (32° — 3) = —12mi.

% 23 —3z+1 211 d
|z|=2 (Z — Z)2 1! z2—=idz z—1

(b) Here, z =0 is a pole of at most seventh order inside |z — 1| = 2, so

% COS z d 271 . db 271 Jim ( ) 274 i
——dz=—1lim — cosz = — lim(—cosz) = ——— = ———.
|z—1|=2 27 6! =0 dz 6! z—0 6! 360

ALTERNATIVELY, it follows by a series expansion for z # 0 that

COs 2 1 22 2t 8 1 11 1 1 11
. —_ ce . _ + + LR
2T 225 24 23 720 z

and since res(f;0) = a_1, we get

CcoS z 21 s
dz = 2mi -res(f;0) = — ¥ — TV
sz_l_Q o7 42 = 2miexes(f30) = —755 = 355

(c) Each of the simple poles zg = 1, i, —1, —i, satisfies z5 = 1, so

1 1 20 20
res| ——;3; 2 | =—5=—"F% = —.
A1) T 43 T 4zt 4
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All poles lie inside |z| = 4, so

4 .
dz . fl14+i—-1—1
,ﬁ|_3 T 1" 2mj§=1 res (f; z;)72mi {?} = 0.

ALTERNATIVELY, the integrand has a zero fourth order at oo, thus res(f;oc0) = 0. Let f* denote
the closed line integral of negative direction. Since all finite poles lie inside |z| = 3, we get

d * d
f = —7{ —Z:—Qm'-res(f;oo):O.
|z |z

Example 4.12 Compute each of the following line integrals:

dz dz
@ 4T O F e

05

-0.5

Figure 6: The path of integration and the four (simple) poles.

(a) Since the curve 2% + y? = 2z, i.e.
(.’E—l)2+y2 = ]-7
surrounds the two simple poles exp (z %) and exp (—i %), and since the residue s here are
1 1 zZ0 4
res<z4——’—1;20>4—zg’z fOI'Zo‘{’].:O,

we get
T

fopn s () o () 2o (i)} - -5

24 y2=2g 24 +1
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Complex Funktions Examples c-6 The residuum at co

Only the pole z = 2 lies inside the circle, so a direct computation gives

7( dz 271 - res ! 2 2mi lim d !
. = T - - = — —
z—223 (2= 1)(2 —2)? (z—1)(z —2)2"’ 1l z2=2dz |z —1

1

ALTERNATIVELY we change the direction of integration, § = — f*. We have a zero of order 3 at
00, SO
dz f* dz
—_— = - —————— = 2mi{res(f;1) + res(f;00)}
]{zm_; (z=1(z—2)? s—2j=3 (2 = 1)(z —2)?

= —27i {140} = —2ni.
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Example 4.13 Compute each of the following line integrals:
dz 2;3
—— b —dz.
@ ¢ ey O bt

(a) The integrand has a zero

of sixth order at oo, so when we chance the direction of integration,
*
§=—¢", we get

dz * dz '
f?'—zm B _7% Goa o - ritestf;3) +res(fioo)}

z|=2
211 211 )

0=— =
1" 242~ 121

It is also possible to carry through an ALTERNATIVE solution, in which we compute the residues
at the five simple poles zg, satisfying 2§ = 1:

1 1 1 1 20 1 n 3 1
res{ —————329 | = = — -4 2. )
(z—3)(z"—1)" ") 2—3 522 5 -3 5 5 z-3
We see that we get into some computational problems concerning the last term, because we for
2
zZo = exp (z %) get the denominator

2 2 2
20—3=exp<i%> -3 = (cos%—i’))—i—isin%.

1
(b) It follows from res(f;00) = —5 = o1, that

3
z
———dz = —2mwi - res(f; 00) = mi.
f/izm e (f;)
ALTERNATIVELY,

23 I 23 1
res| —— 2 = lim — = —
204177 z—z0 823 8
for each of the four simple poles inside |z| = 1, thus
23 4
———dz =2mi - — = 7.
fﬂ—l oAy =2 g =mi

ALTERNATIVELY, the function g(z) = 2z% + 1 has the winding number 4 with respect to 0, and
since ¢'(z) = 823, we get

3 1 ! 421
% f—dz——j{ g(Z)dZ: m:m’,
lz|=1 2% + 1 8 Jiz1=1 9(2) 8

where the latter method assumes some knowledge of the Principle of Argument.
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Example 4.14 Compute
—z
e,
lz]=1 Z

The double pole z = 0 is the only singularityt inside |z| = 1, so

—z —Zz 1 d
sz|—1 cosii(;) dz = 2mi-res (% ; 0) = 277 - i lli% 7 cos (e_z)

2mi - lim {—sin(e7?) - (—e7*)} =2mi-sinl.

Example 4.15 Find the residuum at z =i for

2z -1
Then compute the line integral

% 1
lmij=1 21 =1

1
Since z = 7 is a simple pole of A ve get by RULE II that
A

. LA TS DT
) T s T 4

1
The disc |z —i| < 5 contains only the singular point z = i, so

dz 1 )
— 9 RN S RN, Y S
ﬁz—i_é ] T - res (z4l’l> i

™
5"

Example 4.16 Compute

(a) j|{z=2 . er 1 dz, (b) j|{z|=2 %Jrl dz, (¢) j{ e dz

5 .
z|72 -1

(a) The singularity zo = —1 lies inside |z| = 2, so
7{ i dz = 27i - res (L ; —1) = —27i.
\z|:2 z 4+ ]. z 4+ 1
ALTERNATIVELY,
1 1
f - dz = j{ {1— }dz:—]{ dz
=2 2 +1 |2]=2 z+1 l2)=1 2 T 1
1
= 2mi-res| ——; 00 | = —2m¢ lim = —2mi.
z+1 z—oo z + 1
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z

(b) Since the integrand does not have any singularity in the set given by |z| > 2, and since Y
z

has a zero of second order at oo, we get

z * z z
— d - — - d = —2 - = = 0.
fi2|_2 3 z j{z|—2 ] 2 T - Tes <z3 1 oo>

(c) The integrand has the two simple poles z = %1 inside |z| = 1, thus

e? e? e®
—d 211 ;1 — —1
fi2|_2z2_1 z m{res(z2+1, >+res<22_1, )}

1 -1

- 27m'{% — 67} — 27ri sinh 1.
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Example 4.17 Compute the line integral
ze®
——dz.
fj\zl_g) 1 — 22
It follows directly that

ze?

szl—5 ]. — 2’2

dz

+ 7(_1_)2671

Example 4.18 Compute

1
(a) 7{21'_2 e

} = —2mi cosh 1.

'{reS (—2226_ T 1) + res (—%; —1)}

-2

Figure 7: The four simple poles all lie inside |z — 1| = 2.

(a) It follows from

zeCll <1 S{zeCle -1 <2},

that all singularities lie inside the closed path of integration |z — 1| = 2. We have a zero of fourth
order at oo, so we get by changing the direction of the path of integration,

dz

?{z—l_2 A+l

?{* dz )
——— = —2m1 - res
lo—1)=2 24+ 1

LN\,
Ap1 )T

(b) Every pole lies inside |z| = 2, and we have a zero of order 3 at co. Therefore,

dz

* 1
_ = 971 -
ﬁmﬁw+n “m*Q(

]{ dz
2j=2 22(2 + 1)

z Z+1);oo)0.

71
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Example 4.19 Compute

sin z 27 e®
@ § eyt O ?@:2 = (C>fj L

3
z|=1 %

(a) We have inside |z| = 2 only one singularity z = 1 (a double pole). It follows by the residuum
theorem that

% sin z ds — 9 res sin z 1) = @ lim i sin z
=2 (2 = 1) (22 +9) - (z—1)2(224+9)" ) 1 z=1dz | 22+9
. COS 2 2z sin z [cosl 2sinl
27 lim — 5 271 —
z—1] 2249 (22 + 9) 10 100

5cosl —sinl
25

.

(b) We have four double poles lying inside the curve |z| = 1, and no singularity outside this curve.
Since we have a zero of first order at oo, it follows by RULE IV that

7 * 7 7
f Z72dz —% Zgzdz:—Zm'-res 272;00
lz|=2 (2% + 1) lzl=2 (24 +1) (z4+1)

27 1
= 2miq—lim z- ———= ) =2mi- lim { ————5 » = 27i.
Z—00 (24 + 1) Z—00 ( 1 >
1+ —
z
ALTERNATIVELY it is possible here to apply RULE II1, i.e.
(f: 20) 6A'B" —2AB" 24" 2 AB"
res(fiz)) = —mM8M— = — — —.
120 3 (B//)2 B" 3 (B”)2 ’
where
Alz) =27 and B(z)= (2" +1)x2=2%+2" + 1.
Finally, 2 = —1, so
1
A:zg: —, and A’z?zg:—'ng,
20
Bos(+a), B os(8+3), B —8(12:5+6x),
thus

B"=-32:§ and  B" = -8-36z.

We have for each o the four poles zy that

—32:2 3 32%2.z1 16 3-162.4 4’

The sum of the four residues is 1, so

fo
—dz=2mi.
jz=2 (24 + 1)

2(-7) 2 (-8 16-3°-4 1
ros (f: 20) = (—723) (—8-36) 7 16-3
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(c) Tt follows from

ez_ 1 z 22
e 1+ =+ =4+ 7,

1 2!
that
1 1
a1 = — = —
DTN
hence

z

e ) e® . .
—dz=2mi-res | —=; 0| =27 -a_1 = mi.
- s 23
2|=

ALTERNATIVELY, by RULE I,
d2

z . 1
fi’z'_lz—?)dz%rﬁres(%;()) :2”i'§}%@ezzm

Example 4.20 Compute

423 + 22 dz
S W =
(@) j{_z At22+1 (®) ]{2_2 (z=1)3(z—1)

(a) We see from
A2 +1= (2 + 1)2 = (z—i)%(z+1)%
that we have two double poles zg = +i. In particular, 23 = —1 and

(z — 20)? B 1
Z4+222+1 - (Z+Zo)2.

Thus by RULE I,

423 + 22 1, d|422+22 ) 1222 + 2 423 + 2z
res| 4—55 7% = — lim —¢——— /= lim 5 — 2 5
2t 422241 1 2=z0 dz | (24 z) z=z20 | (2 4+ zp) (2 + 20)
122242 A28 + 229 —12+2 4z (225 +1)
(220)° (229)° —4 220 - 422
5 1
= —+-(-241)=2

and we conclude from the residuum theorem that

42° 42
szl:z #—;il dz = 2mi{res(f;i) + res(f; —i)} = 2mi{2 4+ 2} = 8mi.
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ALTERNATIVELY we have a zero of first order at oo, and no further singularities outside |z| = 2,
hence

B ]{* 423 4+ 2z
o |z|=1 2’4 + 22’2 —|— ].

ori 1i 423 + 22
= 27 lim {—2- —+——
z—00 244+ 222 41

425 + 22

—————dz
]{z|:2 244222 -1

dz = —2mi - res(f; 00)
} = —2mi - (—4) = 8mi.

(b) The only pole inside |z| = 2 is the triple pole z = 1, so we find

?{ o d= I GRS DU S S
e 1Pz —7) T NG ) T Mg P
= ; lim ——1 =T lim—2 = 2 ——ﬂ-—i
T eonr T T T Cer T 08
ALTERNATIVELY,
dz f* dz .
—_ = — ———— = 2mi{res(f; 7) + res(f; 00
$ =6 e GG el i)
. 271 i
= el g 0= = e

because the integrand has a zero of order 4 at co (RULE IV).
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Example 4.21 Compute

(a)f g ) f{z'ﬂ%, () 7{_2(;1#5)2(12.

5
z|=17%

(a) We have only the pole z = 1 of order 5 lying inside the curve |z| = 1. Hence by RULE I

e” 1 d* 2w wi
€ dz=2mi- — li er =Mt _ T
szl_l LTI e e TR T
ALTERNATIVELY we may find a_; in the Laurent series expansion
e? 1 P
£ Ltz o+ g+ g+
P 3!
hence
1 1
a1 =—=—
YT o
and thus
e* 1 m
 dr=omi-— =1,
szl_l ST T
(b) We have only the double pole z = 0 lying inside the closed curve |z| = 2. Then by RULE I
dz 1 d 1 1 27i
Y oni = im & —omi lim - b= 2T
fi|222(z—3) ST zlgtl)dz{z—?)} mzli%{ (2—3)2} 9

ALTERNATIVELY, z = 3 is a simple pole outside |z| = 2. Furthermore, we have a zero of order 3
at 00, so we get by changing the direction of the path of integration, ¢§ = — f*, that

fromemm = Aomy e (aey ) e (aee )}

2(z - 3) sz 22(2 —
1 211

= 2mi{-+0p=—-"—.
m{9+ } 9

(c) Tt follows from ’z’ < 2 and sin~ = 1 that z = — is a double pole lying inside |z| = 2. This is

the only singularity in C, so we get by the residuum theorem that

. 1 d

% L’ngz:%ri'j lim — sinz = 27 lim cosz = 0.
|z|=2 (z — E) 123 dz 3

2

ALTERNATIVELY we expand sin z as a power series from zg = —, i.e.

T 1 T 2
inz =1 .<__>__(__) e
sin z +0-(z 5 5 z 3 +
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hence
sin z 1 0
™2 e T A
ER e
2 2

so a_; = 0, and we get

f L L —)
m
= (3)
2
i. Compute

Example 4.22 Let C' denote the boundary of the square of the corners +2 + 2i

(a) ﬁ%dz, (b)ﬁ%dz, (c)fczzj_ldz

Figure 8: The curve C.

(a) The integrand

T Therefore, by RULE 1,

has inside C' only the simple pole at z =1 5"
—z —z

% ebﬂdz:ZmWres e_7r;iz = 27 exp ig):Qﬂ.
Cz—z§ 2—25

(b) The integrand

cos z
z (224 38)
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has the simple poles z = 0 and z = 4-i2v/2. Only z = 0 lies inside C, so it follows by the residuum
theorem and RULE I that

CoS 2 coS z CcoS z T
—————dz = 2mi - ——0) =21 lim — = —.
fg T2 19) z i - Tes (2(22 9 > mi lim f

1
(c) The integrand _c has a simple pole at z = —5 inside C. Hence,

2z +1
+1
i 2 i . z 211 ™

1
% c dz = 27i - res L; ) =27 lim ~— "2 Z_ _ )
crtl z+1° 2 ot 2241 12 4 2

Example 4.23 Compute the following line integrals:
1— 4\ 2z inh
() f (G Ll N f LS
\z\:% z |z]=1 S z

2z

(a) Here ze** is analytic in all of C, so it follows by a direct computation and reduction, and the
residuum theorem that

1 — 24) 22 2z 2z 278 d?
j{ —( Z)e dz:j{ e—dz—f Z€2Zd2’=% e—gdz+O:ﬂlim—ezzz47ri.
|2|= |2|= lz[=3

1 PA 123 A=1 % 2! z250dz?

2 2 2 ‘

4 h
(b) The singularity at z = 0 is removable, so bl,n—z, extended by the value 1 at z = 0, is analytic
S

in z
everywhere inside and on the closed curve |z| = 1. We conclude from Cauchy’s integral theorem
that

inh
f b2 e =0,
|z|=1 sin 2z
Example 4.24 Compute each of the following line integrals:

1 1 1 1
a) — sin <> dz, (b)) — j{ sin? () dz.
210 J)2=1 z 2 J|z=1 z

(a) We see from

11 1
sin — = —

P T

for z # 0, that a_; = 1, hence

1 1 1
— sin (—) dz = res (sin (—) ; O) =aq_; = 1.
20 J|z=1 z z
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(b) Tt follows from

(1Y _1/, 2 L 1), 12 2+ 1
m2(2)=2d1- Al 1)yt (E U G
° z 2 A2 2 2 20\ z 22 ’

that a_; = 0, and hence by the residuum theorem,

1 1
— sin? <—> dz = 0.
211 |z|=1 z

o
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Example 4.25 Given

_ 2V2- 24 4+ 2% — 22+ /2
(V2 (vaa 1)

Compute the complex line integral

7[14_1 f(2)dz,

where the path of integration is taken in the positive direction, by changing this direction of the path
of integration.

f(z)

1
The function f(z) is a rational function of the simple pole z = 0 and the unpleasant triple pole z = 75
inside |z| = 1, and the simple pole z = v/2 outside the circle. If we change the direction of the path
of integration and then apply the residue theorem, then

fjl_lf(z)dz _ _%* f(z)dz = —2mi{res(f; V2) + res(f;00)}

z|=1
2V2 A2 — 2242 . .
- o PR (s
= 27 BV2+2V2 - 2V2 4 V2 + 2mi - 2v2
V2 (2-1)3 (v2)°

= —18mi+ 27 = —167i.

1
ALTERNATIVELY we compute res(f;0) and res ( IR ) We note that

'
(@.Z_l)gz(ﬁ)f(z_%)‘“’

First we get for z = 0 that

V2

res(f;0) = ————==1
(—V2)(-1)
1
Then we use RULE I to compute the residuum at the triple pole z = ﬁ:
1 1 . d? [2v2 240423 — 2242
res | f; — = 5 lim —— 3
V2 2 L dz 2(z —V2)(V2)
LIS Y 2V224 4+ 2% - 22+ 12
e — 11m ——-: .
2 (V2P o o 22— 2)
Put
22 2 4 23— 22412
h(z) =

2(z —V/2) ’
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and then perform a division of polynomials and a decomposition to get

72\/§~z4+z372z+\/§ - 2 _l
= PG 2(z—V2) =2v2- 22 +52+5V2 Z+—z—\/§.

Clearly, it is much easier to differentiate the latter expression of h(z) than the former one. We obtain

h(z) )

2 18

h//(z)=4\/_—z—3 m,

hence by insertion

(1) = s () s 4\f2<\/§)3+(18
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Finally, we get

f[iz|:1 F(2) ds = 2 {res(f;O) © res ( /s )} i (19— 16mi

Sl

Example 4.26 Given the differential equation
(15) 2* f"(2) + (22 + 2) f'(2) = f(2).
Assuming that
400
f(z)= Z anz"

is a convergent Laurent series solution in a domain of the form {z € C|r < |z| < R} satisfying (15),
we shall find a recursion formula for a,, with polynomial coefficients, and also prove that a, = 0, when
n € N.

Then find all Laurent series solution of (15).
HiNT: The general solution cannot be expressed by elementary functions.
Denote by fo(z) the Laurent series solution of (15), which also satisfies

fo(1) = Ve, res (fo; 00) = 0.

Express fo(z) by elementary functions.

Here there are many possibilities of solution. We shall go through some of them:
1) The power series method (the standard method),
2) Transformation of the differential equation,
3) Inspection,
4) Transformation, follows by an inspection.

First method. The power series method (the standard method). Assume that the Laurent series

f(z)= Z a, 2"

is a solution of (15) in the annulus
Q={zeC|r<]|z| <R}

Then we have in €2,

+o0 too
f(z) = Z na,z" "t og  f(z)= Z n(n — 1)a,z""2
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When we put these series into (15), we get by reduction,

0 = 2f"(2) +22°f'(2) + 2 f'(2) - f(2)
Zn n—1a, 224 Z2nan nt2 4 Znan —Zanz"
(16) = Znn+1az"+2+2n—lan

— Z(n—2)(n—1)an,2z +Z n—1)a,z"

= Y (n—1){(n—2)an2+an}z"

From (16) also follows that

0 = Z n(n+ 1)a,z" "2 + Z(n —Dayz"
Z n(n+ 1)a,z" "2 + Z(n + 1D)ay 02"

= Z(n + 1) {na, + anio} 2"

We have now the following two “variants” of the recursion formula, which shall both be fulfilled
for all n € Z:

(n=1){(n—2)an—2+an} =0,  (n+1){nan+ ans2} =0.

The treatment of each of the two recursion formulee is in principle the same, so we shall only solve
one of them, namely,

(n—1){(n —2)ap_2 +an} =0, n € Z.

If n = 1, then the left hand side is identically zero, so a_1 and a; are independent of each other.

If n # 1, then the recursion formula is reduced to
(n—2)ap—2 + an =0, neZ\{1}.

If n = 2, then as = 0, and since we have a leap of 2 in the indices in the recursion formula, it
follows that

as, =0 for n € N.
Ifn=2p+1, peN,is odd, it follows by recursion that
azpr1 = —(2p = Nagp—1 = (=1)"(2p = 1)(2p—3)---3- 1 - ay,

and since a; is seemingly arbitrary, we cannot immediately conclude that as,41 =0, p € Ny. The
point is that we shall only find the convergent series solutions. Assume that a; # 0. Then it
follows from the above that agp+1 # 0, and we shall check the conditions of convergence for

+oo
(17) Za2p+lz2p+1a
p=0
where
azpr1 = —(2p — 1)agy_1, peN.
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Assuming that z # 0, it follows by the criterion of quotients applied on (17) that the limiting value
of

2p+1
agp 1 22T

a7 1| ~ 2P DI
-

for p — +o00 must be smaller that 1 for the relevant z. This is only possible for z = 0, contradicting
the assumption of z # 0.

Therefore, if a; # 0, the radius of convergence is 0. Since we are only interested in series of positive
radius of convergence, it follows that a; = 0, and hence also asp41 = 0 for p € Ny, which together
with az, = 0, p € N, found previously precisely gives us

a, =0 for n € N.

We have proved that the only possibilities of Laurent series solutions necessarily must be of the
form

+00 +o0 1
)=S0 =3 b bi=as. nel.
n=0 n=0

Replacing n by —n in the recursion formula for a,,, we get
(—n—2)a_p_o+a_, =0, n € No,

and since a_,_9 = by42 and a_,, = by, it follows that

1 1

b2 = n—_’_2bn7 n €Ny, or b,= Ebn—% n €N\ {1}.

1
If b, 5 # 0 and w = — # 0, then
z

b,w™ 1
‘ v =—|wP—-0<1 for n — +o0,
n

bn_an—Q

for every w # 0, and the domain of convergence is given by

1
O<|w|:m<—|—oo.

The series is convergent for z € C\ {0}.
If n =2p, p € N, is even, we get

(18) 2p - bap = ba(p—1y,

hence by a multiplication by 2P~!(p — 1)! # 0, followed by a recursion,

20plby, = 2071+ (p — 1) byp_1y = -+ = 2% - 0l by = 1o,
and thus
= by, = ! N
a_op = 2p_2p—p!a07 p € No.
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ALTERNATIVELY, it follows from (18) by a straight recursion that

1 1 1 1 1 1
b :—.b _ :_7_._19 _ N
=5, ) T 5, 30— 1) 22 210 T gt PETO
If n=2p+1, p €N, is odd, then it follows by recursion that
b 1 b 1 1 1 1 b 1
_ = . R T a_1.
T op 1 P T p+1 2p—1 5 3 YT (2p+)(2p-1)---5-3-1 "

Remark 4.1 It is here possible further to reduce the expression by multiplying the numerator
and the denominator by 27 - p! £ 0. This gives

1 2p 1 2(p—1) 1 2-2 1 21 1 2P pl
b2p+1: ¢ —_— . . ...—._._._.a_lzia_l_ <>
2p+1 2p 2p—1 2p—2 2p —3 4 3 1 (2p+ 1)!
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Summing up, all Laurent series solutions, which are convergent for z € C\ {0}, are given by
+oo 1 +o0
R S N e N
n=0 p=0

R T | 1 1 1
- aoz_:nlzn'zTn+a‘1{2+;(2p+1)(2p—1)---5-3~1'z2p+1}
R L 1
N OZ {ﬁ} s 12 (2n + 1)1 2041

2”n' 1

Only the zero solution can be extended to all of C.

The series expansion of fy(z) is convergent in C\ {0} (a neighbourhood of c0), so the condition is
that

a—1 = —res(fo; 00) =0,

so if z € C\ {0}, then
fol2) = ag-exp
olZ) = ap - exXp 2—22 .

Second method. Transformation of the differential equation. Since we shall prove that
an =0 for n € N,

we shall actually prove that f(z) has the structure

+oo 1 +oo 1
z)zZa_n-Z—nzz:bnw”:g(w), w= -, a_p = by,.
n=0 n=0
The idea is to transform (15) into an equivalent differential equation for g(w). Since

dwid 1 7717711}2
dz dz \z[ 22 ’

it follows from the chain rule that

_d dw 1

f'(z) e g9(w) = g'(w) e —w?q(w) = 2 g'(w),
and
F1(2) = ) — 5 0" () 02 = 2/ () + 'y (w),

Download free books at BookBooN.com

85



Complex Funktions Examples c-6 The residuum at co

which we put into (15) for z # 0 and w # 0,

0 = P+ (24 2) £ - )
o1 i) 2w} + {5+ 2 (g w) - otw)

= W)+ =g w) ~ g (w) — wg' (W) — gw) = g (w) — wg'(w) — gluw).

The equation (15) is in the domain C\ {0} equivalent to

(19) ¢"(w) —wg'(w) — g(w) =0,  weC\{0},

where (19) of cause can be extended to w = 0. (The restriction w # 0 is only caused by the
transformation w = 1.) Since (19) is a differential equation of analytic coefficients without singular
points, (i.e. the coefficient of g”(2) is # 0 everywhere), all solutions of (19) are power series solutions
of domain of convergence C, and there are precisely two linearly independent families of solutions.
We conclude that a,, = b_,, =0 for n € N.

Put
“+o00 +oo +o0
g(w) = Z byw", ¢(w)= Z nb,w" 1t ¢ (w) = Z n(n — 1)b,w" 2.
n=0 n=1 n=2
Then by insertion into (19),
“+oco o0 “+oo +oo 00
0= Z n(n—1)bw™ 2 — Z nb,w" =Y byw" = Z(n—i— 2)(n+1)bpqow™ — Z(n—l— 1)byw™,
n=2 n=1 n=0 n=0 n=0
(n=0)
thus
+oo

Z(n + D {(n+2)byi2 —byfw™ =0.

n=0

It follows from n + 1 # 0 for n € Ny and by the identity theorem that we have the following
reduced recursion formula,

1

(n+2)bnio us 2=

bn, n e No.

Then we proceed as in the first method above.

Third method. Inspection. Assume that z # 0. If we divide (15) by 22, we get by a small rear-
rangement that

1 / zf'(z) =1 f(z d ’ d z
0={2f"(z) + 2= f (z)}+M = {2f (z)}Jr%{f(Z)}
Hence by an integration,
(20) 2%f'(2) + @ =g, 2#0, cé& C arbitrary.
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When we put the Laurent series of f(z) and f’(z) into (20), then

+oo
c= Znanz”“—kz anz" ! = Z(n—l)an_lz”+z ap12" = Z {(n—1)an—1 + ant1} 2"

n=—oo
Then we apply the identity theorem. We get in particular for n = 0,
—a_1+a; =c.

However, c is an arbitrary constant, so this equation only says that a_; are a; independent of each
other.

If n # 0, then
(n—1)ap—1 + apt1 =0, n € Z\ {0},

which is a third variant of the recursion formula. This is with only trivial changes solved in the
same way as by the first method.

.
s &
= F
| \" Y
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Fourth method. Transformation, followed by inspection. We can also inspect the transformed dif-
ferential equation (19). This gives

0=g"(w) —wg'(w) - g(w) = 2~ {g'(w) —w-g(w)},
hence by an integration,
g'(w) —w-g(w) =c.

If ¢ =0, we get

g(w) = a-exp (%) ;

and if ¢ # 0 we insert the series and solve the new recursion formula. The details are left to the
reader.

Example 4.27 (a) Describe the type of all isolated singularities in C* = C U {oo} of the function

. 1
23 exp <—>
_\Z/

e = ——

(b) Compute the line integral

1
23 exp (—)
f — g
|z|=2

14z

(a) We have clearly the three singularities z = 0, z = —1 and z = oo, and no other.

Obviously, z = 0 is an essential singularity (see what happens when e.g. z = x — 0 along the
positive and the negative real half axis, respectively).

Furthermore, z = —1 is trivially a simple pole, and finally, z = oo is a double pole. The latter is
seen in the following way:
f(z)

lim ~—= = lim
z—o0 2 z—oo 1 4+ 2

exp<1>=1-60=17€0.
z
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(b) Then by Cauchy’s residuum theorem,

1
23 exp <—>

2
— " %

)

—271 - res

1 1
23 exp (—) . Zexp <—>
f N g ]{ N g
|z]=2 \

1+2 B

1
— expz

. 1 3 ) 1 e? o1 d3 e?
= 2mi-res ;-H—E;O :2m-res<;~m;0>=2m 30 gLOdz3{m}

i T d e? e? Lo e?
= [— = — ]1lm — — . . -
3 ZHOdZ z—|—1 z—i—l)2 3 z—0dz |z +1 (z—i—l)2 (z+1)3
T z e e® e 271
= li 3 6 -6 :—1—3 6—6}=——.
3z1—>o{z+1 (z+1)2+ (z+1)3 (z+1)4} { + } 3
ALTERNATIVELY,
1 1 1
23 exp (—) 23 exp <—> 23 exp (—)
% N gy — omi d res —z;O + res —Z;fl ,
|z|:2 1 + z 1 + z 1 + z
where
1
2 exp (_>
res | ———~2 1| = (=1) exp RN
1+z -1 e’
because z = —1 is a simple pole.

Since z = 0 is an essential singularity, we must here find a_; in the Laurent series expansion of
f(2) in 0 < |z| < 1. We have in this domain,

2 exXp <é> +oo +o00 +oo +oo
— - 23 kZ:O(_l)kzk ) Z Z Z m' S3+k—m

mO k=0 m=0

It follows that we get a_; for 3+k —m = —1, i.e. when m = k + 4, followed by a summation over
k,

res %0 = a_ —f(_l)k—m(—l)”_l_{ 1 1_1}
k !

1+z 7 :O(k+4)!_n:4 nl e
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and then by insertion,

1
23 exp <—>
j{ _ \Z)
|2|=2

142
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Example 4.28 Find the Laurent series expansion from z =1 of

Z+4+2

AN EEI e}

in the domain given by 0 < |z — 1| < 4.

Find the residuum of f at z=1 and z = cc.

First method. We get by the change of variable w = z — 1,

f(z)w(w)-#f’@—%(lﬁ).

(a) If0 < |z —1] =|w| <4, then
—+oo
1 1 1 1 1 w\ "
= —(1-=. ——J1-= . (=
1) w4< 1 1+%) w4{ 12 (4)}
+oo
3 1 1 wy"—* 3 1 1 wH\ "
= . 4= _pntio (= =2, 4= _)ntt (2
4 w4+45nz::1( ) (4) 4 w4+45nz( ) (4)

3 1 1T X 1"
S =T DS Fe

n=-3

(b) If |z — 1] = |w| > 4, then we get instead

o - %'@%'Jg)Z%'{l‘if(‘”"'@)n}

n=0
+00 n +o0 n+5
1 1 4 1 1 4
= _— — —]_ 77,+]_ . —_ = — — —1 n+1 : -
i DY (w) st (o
n=0 n=0
—+oo
1 1 1
S I O .
—1)4 5 _1\n
(z=1)t 45~ (z—1)

Second method. We use again the change of variable w = z —1; but then we alternatively and more
clumsy though also more realistic, decompose instead,

w+3 11 1 1 1 1 1 1 3 1
fR)= = =

Wil Ferd @ B o tE w1 e

This decomposition is in itself difficult, so we only sketch the remaining part of the solution. We
use the same method as above on
1 1
44 w+4’
for 0 < |w| < 4, as well as for |w| > 4.
And then we get all the trouble of the final reductions.
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Since f(z) has a zero of order 4 at oo, we have

res(f;00) = 0.
Furthermore, z = —3 is a simple pole, so
—1 1
res(f; —3) = 1t - 256

The sum of the residues is zero,
res(f;1) +res(f; —3) +res(f;00) =0,

hence

1

res(f;1) = 256"

ALTERNATIVELY, z = 1 is a pole of order 4, hence by RULE I,

res(f;1) = L lirnd—3 2tz ! lim lim 1
T B S1d \z+3) 3l dz3 o4 3 3' o | d22 (z+3)2
1

2 1
= —lim-—<d-—— Hm — = — = .
3! z1—>mldz{ (z+3)3} 30 (z—|—3) 44 256
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